These Twenty Amazing Projects Won The Robotics Module Challenge

Right now, we’re running the greatest hardware competition on the planet. The Hackaday Prize is the Academy Awards of Open Hardware, and we’re opening the gates to thousands of hardware hackers, makers, and artist to create the next big thing. Last week, we wrapped up the second challenge in The Hackaday Prize, the Robotics Module challenge.…

via These Twenty Amazing Projects Won The Robotics Module Challenge — Hackaday

Quote

PCBs As Linear Motors

From  on Hackaday:

2070121528672118933.gif

PCBs As Linear Motors

PCBs are exceptionally cheap now, and that means everyone gets to experiment with the careful application of copper traces on a fiberglass substrate. For his Hackaday Prize entry, [Carl] is putting coils on a PCB. What can you do with that? Build a motor, obviously. This isn’t any motor, though: it’s a linear motor. If you’ve ever wanted a maglev train on a PCB, this is the project for you.

This project is a slight extension of [Carl]’s other PCB motor project, the aptly named PCB Motor. For this project, [Carl] whipped up a small, circular PCB with a few very small coils embedded inside. With the addition of a bearing, a few 3D printed parts, and a few magnets, [Carl] was able to create a brushless motor that’s also a PCB. Is it powerful enough to use in a quadcopter? Probably not quite yet.

 

Like [Carl]’s earlier PCB motor, this linear PCB motor follows the same basic idea. The ‘track’, if you will, is simply a rectangular PCB loaded up with twelve coils, each of them using 5 mil space and trace, adding up to 140 turns. This is bigger than the coils used for the (circular) PCB motor, but that only means it can handle a bit more power.

As for the moving part of this motor, [Carl] is using a 3D printed slider with an N52 neodymium magnet embedded inside. All in all, it’s a simple device, but that’s not getting to the complexity of the drive circuit. We’re looking forward to the updates that will make this motor move, turning this into a great entry for The Hackaday Prize.

PCBs As Linear Motors

My Adventures with Open Hardware

From Michael Welling on the SparkFun blog:

photo_4

My Adventures with Open Hardware

While watching an Adafruit show-and-tell episode, I noticed that Scott Shawcroft was presenting a new feather baseboard he designed and assembled that was based on the SiFive FE310 RISC-V microcontroller. I ending up helping Scott debug his design, which in turn helped me develop some contacts at SiFive. We were using such early silicon that we even ended up helping correct mistakes in the chip documentation. In the meantime, I had created the LoFive design, using a Teensy-like form factor.

photo_5

Having a design ready gave me enough leverage that SiFive ended up providing samples of the FE310. I ended up hand-assembling several of the LoFive boards, and handed most of them out for free at the Open Source Hardware Summit 2017 in Denver. After a few months, I was talking to Ron Justin from GroupGets about potential new campaigns. LoFive came up so we launched it! The LoFive campaign went on to be one of their most successful, with 257 percent funding and units that were shipped throughout the world, which was quite unexpected. During the campaign, I even got to visit to the SiFive headquarters while in San Francisco for Linaro Connect.

 

My Adventures with Open Hardware

Joe Grand is Hiding Data in Plain Sight: LEDs that Look Solid but Send a Message

Thursday night was a real treat. I got to see both Joe Grand and Kitty Yeung at the HDDG meetup, each speaking about their recent work. Joe walked us through the OpticSpy, his newest hardware product that had its genesis in some of the earliest days of data leakage. Remember those lights on old modems…

via Joe Grand is Hiding Data in Plain Sight: LEDs that Look Solid but Send a Message — Hackaday

Joe Grand is Hiding Data in Plain Sight: LEDs that Look Solid but Send a Message