Tindie Seller Projects in The Robotics Module Challenge

From  on Tindie blog:

2018-hackaday-prize-challenges-from-poster1.jpgTindie Sellers Competing in the Hackaday Prize

The Robotics Module Challenge just wrapped up and last week we featured two of the twenty finalists who are also Tindie Sellers. Today let’s look at several other Tindie Sellers who got in the game with their own robotics module designs!

Tindie seller Citrus CNC Store is working on a low-cost automatic pick and place feeder and entered it into the robotics challenge. The pick and place machine is a valuable resource for building electronics.

The end goal here is to create a fully featured pick and place machine at a mid-range hobby 3D printer price point, with support for at least 20 automatic tape feeders and loop control of every motion related component. Check out this project on Hackaday.io.

Another Tindie seller who owns the proto-Phi Store is working on a modular design for a soft robotic gripper.

The design is for soft robotics fabrication and emphasizes the molds and subsequent actuators. The current method combines the softness of a silicone actuator and a 3D plastic exoskeleton.

Check out the project page for more details!

Supporting Our Tindie Sellers

These aren’t the only Tindie sellers participating in this year’s Hackaday Prize. Take a look at these other robotics projects from our talented makers:

Stay tuned for more updates on the finalists, and future modules in this year’s Hackaday Prize!

Tindie Seller Projects in The Robotics Module Challenge

This Is Your Last Chance To Design The Greatest Robotics Modules

It’s Friday, and that means this is your last weekend to get your project together for the Robotics Module Challenge in this year’s Hackaday Prize. We’re looking for tools for robots that blow the doors off what is commercially available.

via This Is Your Last Chance To Design The Greatest Robotics Modules — Hackaday

This Is Your Last Chance To Design The Greatest Robotics Modules

2018 Hackaday Prize: Build Hope. Design the Future

Every year we are inspired by the projects entered into the Hackaday Prize, and we are excited that the 2018 Hackaday Prize season has begun:

This is our global engineering initiative with huge prizes for those hackers, designers, and engineers who want to use their skill and energy to build something that matters. This year, we challenge you to Build Hope. Show the world the amazing ways technology enriches humanity, and that its benefits can be shared by all. There is over $200,000 in cash prizes headed to the most interesting hardware builds of the year. With plenty of room for great ideas, the top 100 entries will each receive a $1,000 cash prize and continue

Have you entered a project into 2018 Hackaday Prize?

 

2018 Hackaday Prize: Build Hope. Design the Future

Reflowduino: Open Source Reflow Oven Controller

 writes on Hackaday about Timothy Woo’s Reflowduino:

1658421509137060505-e1509247070943

Hackaday Prize Entry: Reflowduino, the Open Source Reflow Oven Controller

Face it — you want a reflow oven. Even the steadiest hands and best eyes only yield “meh” results with a manual iron on SMD boards, and forget about being able to scale up to production. But what controller should you use when you build your oven, and what features should it support? Don’t worry…

3821281510029060878

Dubbed the Reflowduino for obvious reasons, Timothy Woo’s Hackaday Prize entry has everything you need in a reflow oven controller, and a few things you never knew you needed.
 
 
Reflowduino: Open Source Reflow Oven Controller

BeagleLogic Standalone

Kumar Abhishek just announced on his blog a project that he has been working on the past four months:

beaglelogic-standalone-top (1)

Announcing: BeagleLogic Standalone

BeagleLogic Standalone is a specialized version of the BeagleBone which is intended to be used a logic analyzer based on BeagleLogic.

Screenshot-from-2017-10-10-09-37-04

This logic analyzer has networking capabilities (10/100/1000Mbps Ethernet); it can be used to used to debug circuits remotely. And as it is a full-featured Linux computer, you can run the sigrok set of tools directly on the BeagleLogic Standalone board (they come preinstalled in the BeagleLogic system image), or on your host PC. It has 16 channels and can sample up to 1.5 seconds of data at the maximum sample rate, which is 100MSamples/sec (3 seconds of data if using only the first 8 channels).

Screenshot-from-2017-10-06-14-45-03

I designed and 3D printed a snug fit “open” case for the BeagleLogic standalone board. I’ve written more about it in a Hackaday.io project log.

bls-3dprintedcase

BeagleLogic Standalone is one of the 20 finalists in the Best Product round of the Hackaday Prize. The results are awaited on the 11th of November. It’s been a great journey taking BeagleLogic standalone from a concept to a prototype and giving a glimpse as to what it could be as a finished product and the experience I gained during the process is invaluable, and I wish to thank Hackaday for providing me with this opportunity.

If enough people sign up, I plan on organizing a group buy for BeagleLogic Standalone boards. If you want to get one, please do not hesitate and sign up here.

The documentation for the board is available at standalone.beaglelogic.net. You can also follow the project on Hackaday.io here.

BeagleLogic Standalone

Hackaday Prize Entry: Global Positioning Clock

For one of [Nick]’s Hackaday Prize entries, he’s building a minimalist GPS clock. First up, the centerpiece of every clock, the display. There are eight seven-segment displays, two each for the hours, minutes, and seconds, and a smaller digit for tenths of a second. These displays are controlled by an ATXmega32E5, an upgrade on an earlier version of this project that only used an ATtiny and a MAX6951 LED driver.

via Hackaday Prize Entry: Global Positioning Clock — Hackaday

Hackaday Prize Entry: Global Positioning Clock