LC Oscillators, Animated

e wish that all the beautiful animations that are available today to understand math and electronics had been around when we were in school. Nonetheless, they are there for today’s students and [Learn Engineering] has another gorgeous one covering LC oscillation. Check it out, below.

If you are thoroughly grounded — no pun intended — in LC circuits, you probably won’t learn anything new. However, the animations are worth watching, just to admire them, if nothing else.

We were amused by his statement: “… looks as if the capacitor is saying: ‘you take the energy’ and the inductor then says, ‘no, you take my energy.’” Then we were further amused by [Seraph’s] comment which added, “Resistance in the circuit: ‘Alright, I’ll take the energy, then.’”

Of course, there are other ways to think of an LC circuit. The math isn’t that hard. Most of us learned that the circuit’s mechanical analog is a mass on a spring or a pendulum. The mass’s potential energy stretches out the spring until the spring then pulls it back until the potential energy of the mass pulls it back down.

If you want to experiment virtually, try the Falstad simulator. Just remember that if you think the sine wave isn’t dampening to look at the scale. As the sine wave dampens, the simulator will adjust the scale so you keep seeing approximately the same size sine wave.

We never get tired of watching the Fourier series explained graphically. Or anything from [3Blue1Brown].

via LC Oscillators, Animated — Hackaday


Hackaday Belgrade: Call for Proposals

Join Hackaday in Belgrade, Serbia on May 9th, 2020 for the Hackaday Belgrade conference!

The biennial hardware conference is just seventeen weeks from now. Early Bird tickets will go on sale shortly, but beginning right now you can hack your way into the conference by submitting a talk proposal. Accepted speakers receive free admission, plus everyone who submits a quality talk proposal will be given priority when tickets go on sale.

Yes, I’m talking to you. Hackaday strives to include first-time speakers in the slate of presenters at our conferences. We’re looking for unique, cutting-edge, whimsical, crazy, formidable, or world-changing topics revolving around hardware creation. From learning new tools or techniques to fabrication adventures, from code-wrangling that firmware project to pulling off an art installation, and from forgotten hardware history to the impossible made possible on your own workbench, we need to hear your stories!

That project for which you went into the deep weeds and worked your way back out again? Everyone at a Hackaday conference wants to hear about it and in the greatest detail possible. After all, we’re your fellow hackers. In fact, you should probably bring the hardware along for the ride.


None of this happens in a vacuum. This is the third Hackaday Belgrade conference, which have now settled into a tick-tock cadence of even-numbered years. The first two both sold out, this one will as well, and the result is always an action-packed, nearly 24-hour marathon sprint of talks, workshops, and hardware hacking. But the only reason this works is because amazing people just like you make it a priority in their life to be there.

via Hackaday Belgrade: Call for Proposals — Hackaday


PoE Powers Christmas Lights, But Opens Up So Much More

Addressable LEDs are a staple of homemade Christmas decorations in our community, as is microprocessor control of those LEDs. So at first sight [Glen Akins]’ LED decorated Christmas tree looks pretty enough, but isn’t particularly unusual. But after reading his write-up you’ll discover there’s far more to the project than meets the eye, and learn a lot about the technologies behind it that has relevance far beyond a festive light show.

The decoration is powered exclusively from power-over-Ethernet, with a PIC microcontroller translating Art-Net DMX-over-Ethernet packets into commands for the LED string. The control board is designed from the ground up and includes all the PoE circuitry, and the write-up  gives a very thorough introduction to this power source that takes the reader way beyond regarding PoE as simply another off-the-shelf black box. Along the way we see all his code, as well as learn a few interesting tidbits such as the use of a pre-programmed EEPROM containing a unique MAC address.

So if your house has CAT5 wiring and you want an extra dimension to your festive splendour, you’ve officially got a whole year to build your own version. He’s featured here before, with his buzzer to break the Caps Lock habit.

via PoE Powers Christmas Lights, But Opens Up So Much More — Hackaday


Hackaday Superconference: An Analog Engineer Dives Into RF

Those of us who work with electronics will usually come to the art through a particular avenue that we master while imbibing what we need from those around it. For example, an interest in audio circuitry may branch into DSP and microcontrollers as projects become more complex. Some realms though retain an aura of impossibility, a reputation as a Dark Art, and chief among them for many people is radio frequency (RF). Radio circuitry is often surprisingly simple, yet that simplicity conceals a wealth of complexity because the medium does not behave in the orderly manner of a relatively static analogue voltage or a set of low-frequency logic levels.

Chris Gammell is a familiar face to many Hackaday readers for his mastery of much electronic trickery, so it comes as something of a surprise to find that RF has been one of the gaps in his knowledge. In his talk at the Hackaday Superconference he took us through his journey into RF work, and the result is a must-watch for anyone with a curiosity about radio circuitry who didn’t know where to start.

via Hackaday Superconference: An Analog Engineer Dives Into RF — Hackaday


Bunnie at 36C3: Open Source is Insufficient to Solve Trust Problems in Hardware

On his talk this year at the 36C3, [bunnie] showed a detailed insight of several attack vectors we could face during manufacturing. Skipping the obvious ones like adding or substituting components, he’s focusing on highly ambitious and hard to detect modifications inside an IC’s package with wirebonded or through-silicon via (TSV) implants, down to modifying the netlist or mask of the integrated circuit itself. And these aren’t any theoretical or “what if” scenarios, but actual possible options — of course, some of them come with a certain price tag, but in the end, with the right motivation, money is only a detail.

Sure, none of this is particularly feasible or even much of interest at all for a blinking LED project, but considering how more and more open source hardware projects emerge to replace fully proprietary components, especially with a major focus on privacy, a lack of trust in the hardware involved along the way is surely worrying to say the least. At this point, there is no perfect solution in sight, but FPGAs might just be the next best thing, and the next part of the talk is presenting the Betrusted prototype that [bunnie] is working on together with [xobs] and [Tom Marble]. That alone makes the talk worth watching, in our view.

via 36C3: Open Source is Insufficient to Solve Trust Problems in Hardware — Hackaday


Hackaday at the 36th Chaos Communication Congress (36c3)

Drew (@pdp7) is at the Chaos Communication Congress (36c3) and so is the Hackaday community:


It’s that time of year again here in Germany. The mulled wine flows all night long at the Christmas markets, the Krampus runs wild in the streets, and hackers are perched frantically behind their keyboards and soldering irons, trying to get their last minute projects “finished” for the 36th annual Chaos Communication Congress (36C3) in Leipzig.

We’ll have an assembly for all fans and friends of the Jolly Wrencher, so if you’re coming to Congress, you can come join us or at least stop by and say hi. [Elliot] and [Sven] and a number of luminaries will be on hand. (Ask us about secret stickers and an as-yet unannounced upcoming Hackaday conference.)

Even if you’re not able to make it, you should keep your eyes on Hackaday from the 27th to the 30th, because we’ll be reporting on the best of Congress. But you don’t have to take our word for it: the Chaos Computer Club makes all of the talks available on livestream during the event, many with simultaneous translation, and final edited versions often appearing just a few hours afterwards.

We’ve looked through the schedule, and it’s going to be a hum-dinger! Gather ’round the glowing box with your friends at your own local hackerspace, or call in sick from work and make yourself some popcorn. This is must-see nerd TV.

Whether you’ve been naughty or nice, swing by our assembly if you’re going to be in Leipzig for the last few days of 2019. See you there!

via Hackaday is Going to the 36th Chaos Communication Congress — Hackaday


KiCad teardop plugin and flexible PCBs

Screenshot from 2019-12-06 21-04-05

Thanks to Anool posting on Hackaday about KiCad plugins.  I decided to try out the Teardrop plugin by NilujePerchut:

Screenshot from 2019-12-11 14-51-09

KiCad Teardrop Plugin

This action plugin adds and deletes teardrops to a PCB.

This implementation uses zones instead of arcs. This allows to comply with DRC rules by simply rebuild all zones. You can also modify their shape by simply modifying the zone outline (like any other zone). Teardrops created with this script use a specific priority (0x4242) to be recognized as teardrops.

Here is the result of my first experiment to use the Teardrop plugin on a flexible PCB to reduce the mechanical stress of flexing the trace:

The board is available as an OSH Park shared project and the KiCad design files are on GitHub.

The author of the plugin was very responsive to GitHub issues and I was able to get better results on my next flex design which is currently being manufactured:

My flex “business card” will fold over a coin cell battery to light a 0603 LED.

Curious how the plugin works?  It creates zones next to the vias and pads.  Here are the two teardrop zones that connect traces to a via:

Warning: you need create a schematic and generate a netlist before starting the PCB layout.  Otherwise the the zones the plugin creates won’t be filled:

You also need to be careful that there is not copper on the same layer too close to the zone.  For example, the text was too close to the teardrop zone on this via, so I moved the text down and the zone now fills correctly:

An open GitHub issue is that the teardrop zone does not align perfectly for SMD pads that are not circles (like rectangles, squares, rounded rectangles).  The work around I used was to move the zone after it is filled to align with my SMD pad:

I hope you have fun with this plugin and leave a comment if you use it your own design!

UPDATE: I joined Adafruit Show-n-Tell to talk about flex PCBs and the teardrop plugin at 10 min 51 sec mark

KiCad teardop plugin and flexible PCBs