Creating a DIP ATtiny85 Watch with the DS3231

Untitled drawing

Creating a DIP ATtiny85 Watch with the DS3231

As Douglas Adams explained in The Hitchhiker’s Guide to the Galaxy, digital watches are “pretty neat” to us primitive life forms. Something about the marriage of practicality, and sheer nerdiness gets me oddly excited. Somewhere in my fascination I asked myself, “can I make a digital watch entirely of my design?” I did! And it taught me a lot about pcb fabrication, low power programming, and shift registers.

ezgif.com-crop

Probably the most important function of a watch is that it keeps time. While you could use your microcontroller to count the seconds and save on parts, there are some major downsides to this. For one, the microcontroller is much worse at keeping time than a dedicated RTC (Real Time Clock) IC, the time would drift significantly with temperature and battery voltage. Another serious problem is that it would require the microcontroller to always be on, keeping track of the time. This would consume much more current than an RTC IC, draining the battery significantly faster. Thus we employ a DS3231 to casually sit in the background, consuming microamps from it’s own back-up battery (which, at the rate of 200µA, would take 12.56 years to drain).

Creating a DIP ATtiny85 Watch with the DS3231

Reflowduino: Put That Toaster Oven To Good Use

From  on the Hackaday blog:

Reflowduino: Put That Toaster Oven To Good Use

There are few scenes in life more moving than the moment the solder paste melts as the component slides smoothly into place. We’re willing to bet the only reason you don’t have a reflow oven is the cost. Why wouldn’t you want one? Fortunately, the vastly cheaper DIY route has become a whole lot easier since the birth of the Reflowduino – an open source controller for reflow ovens.

This Hackaday Prize entry by [Timothy Woo] provides a super quick way to create your own reflow setup, using any cheap means of heating you have lying around. [Tim] uses a toaster oven he paid $21 for, but anything with a suitable thermal mass will do. The hardware of the Reflowduino is all open source and has been very well documented – both on the main hackaday.io page and over on the project’s GitHub.

sidekick-e1525981389910

The board itself is built around the ATMega32u4 and sports an integrated MAX31855 thermocouple interface (for the all-important PID control), LiPo battery charging, a buzzer for alerting you when input is needed, and Bluetooth. Why Bluetooth? An Android app has been developed for easy control of the Reflowduino, and will even graph the temperature profile.

When it comes to controlling the toaster oven/miscellaneous heat source, a “sidekick” board is available, with a solid state relay hooked up to a mains plug. This makes it a breeze to setup any mains appliance for Arduino control.

 

Reflowduino: Put That Toaster Oven To Good Use

ATTiny wearable by Facelesstech

tl;dr It’s a foundation for a wearable platform. It’s a Nato watch strap threaded through a PCB with a coin cell battery holder between the PCB and the strap. I’m using a Attiny85 this time around but could be used for most chips/dev boards. This is a proof of concept to iron out any problems […]

via Attiny wearable — Facelesstech

ATTiny wearable by Facelesstech

Building a Giant USB Three Key Mechanical Keyboard

From Jeremy S. Cook on the Hackster blog:

1_Un7UKnIW5LinAhX8Pbg4DQ

Ginormous 3-Switch Keyboard Is Awesomely Impractical

As hackers and creators, we sometimes get asked the question “why?” While many of the gadgets we make do have a specific purpose, many of them definitely don’t, and are made because we wonder if something can actually be done. This giant three-key mechanical keyboard would certainly fall into that second category, and though I can’t think of a practical use for it, I still find the device quite entertaining.

1_nDZswgG0dfI2lgmY9SzFFw

The heart of this device is a trio of “Big Switch” devices from Novel Keys, which are four times larger in length/width/height than what you’re used to typing on. While that might sound only sort of interesting, that translates to 64 times normal size in volume; plus they include similarly ginormous keycaps. Glen Akins, inspired by a similar project on Adafruit, decided to build his own 3-key array, with a PIC18F14K50 chip providing an interface between the keys ans USB input.

DSC00640-1024x683.jpg

The housing is made out of aluminum, and sits at an angle to the user for excellent ergonomics — if you happen to be a giant, and only use three keys at a time. While the electronics are fairly straightforward, these large keys are electrically quite noisy. Debounce code was added to combat this, reducing the letters per keypress from a range of one to three to only a single character.

Read more on Glen’s own Photons, Electrons, and Dirt blog:

Building a Giant USB Three Key Mechanical Keyboard

Building a Giant USB Three Key Mechanical Keyboard

iceRadio SDR project

Software Defined Radio (SDR) project by Eric Brombaugh:
iceRadio.jpg

iceRadio

This is a test prototype for experimenting with Software Defined Radio (SDR). It is composed of several boards that are described in detail elsewhere on this site:

Combined with suitable firmware and FPGA design, these boards comprise a receiver capable of capturing 20kHz of signal from DC to over 1GHz, demodulating it with a variety of formats and driving high-quality audio.

iceRadio_system.png

Tuner

RF input from the antenna can optionally be tuned down from VHF/UHF frequncies to an IF frequency in the HF range before passing to the ADC.

ADC

Raw HF or downconverted VHF at an IF of 5MHz is digitized to 14-bit resolution. The maximum input signal allowed without exceeing the range of the ADC puts the 0dBfs point of this system at -10dBm in 50 ohms. The ADC runs at 40MSPS with a resolution of 10 bits, providing approximately 60dB of dynamic range and 20MHz of bandwidth which places the quantization noise floor at about -70dBm.

FPGA

From the ADC, data passes into the FPGA. This is an iCE5LP4k part which provides 20 4kb RAM blocks and 4 16×16 MAC blocks which are essential for the DSP required for the downconversion. In the FPGA the ADC data is pre-processed to a sample rate appropriate for the MCU. Figure 2 below shows the primary components of the FPGA design.

iceRadio_fpga

The C and Verilog source code is available on GitHub:

emeb/iceRadio

iceRadio SDR project