Donkey Self-Driving Car

Kwabena Agyeman shows how to create a DIY Robocar forked off of the “Donkey” Self-Driving car platform using the OpenMV Cam

donkey-car-web

Donkey Self-Driving Car

The OpenMV Cam Donkey Car is designed to be easy to build out of parts that you can buy online and assemble together with basic tools. Below is the list of essential parts you’ll need to build the self-driving car.

step(34)small.jpg

Here is the car in action:

kwagyeman has shared the servo controller board on OSH Park:

OpenMV Cam Servo Controller

6ec7d6712270e213752a2e7851c94c65.png

Order from OSH Park

Donkey Self-Driving Car

Reflowduino: Open Source Reflow Oven Controller

 writes on Hackaday about Timothy Woo’s Reflowduino:

1658421509137060505-e1509247070943

Hackaday Prize Entry: Reflowduino, the Open Source Reflow Oven Controller

Face it — you want a reflow oven. Even the steadiest hands and best eyes only yield “meh” results with a manual iron on SMD boards, and forget about being able to scale up to production. But what controller should you use when you build your oven, and what features should it support? Don’t worry…

3821281510029060878

Dubbed the Reflowduino for obvious reasons, Timothy Woo’s Hackaday Prize entry has everything you need in a reflow oven controller, and a few things you never knew you needed.
 
 
Reflowduino: Open Source Reflow Oven Controller

µGame by Radomir Dopieralski

Radomir Dopieralski has created handheld game console programmable with (Micro/Circuit)Python:

2179411509287391232.jpg

µGame

A small game console directly programmable in Python. I always wanted to make this, and after my work on #PewPew FeatherWing I finally decided that I’m ready.

The first version may be a bit of a stretch — I tried to make it as small as possible, fitting in the 5x5cm limit of PCB manufacturers, so that it will be cheap to make the PCBs. Using the cheap ST7735 TFT display, and a cheap ATSAMD21E chip. I also tried to put all the components on one side of the board, but failed with that — the power and reset switch had to go on the back, as well as the buzzer.

 

 

µGame by Radomir Dopieralski

Rotary Encoder with I2C Interface and RGB Lighting

From Jeremy S. Cook on the Tindie blog:

encoder (1).jpg

Rotary Encoder with I2C Interface and RGB Lighting

Makernet Knob’s makes the point that “Rotary encoders are cool but hard to wire into your projects.” Having wired up a custom input device for my computer using an encoder, I can attest to both of these statements. In my case, it took me quite a bit of time simply to figure out how each encoder pin was used!

2017-10-06T21_08_06.531Z-GM1200PTH pic4.jpg.855x570_q85_pad_rcrop.jpg

To help alleviate complicated wiring issues, this custom knob features a built-in I2C interface, which allows several (even hundereds) of knobs to be chained together without issue. Additionally, the top of the encoder can be depressed as a pushbutton, and it even has an RGB LED integrated inside of it to give you feedback right on the knob!

Rotary Encoder with I2C Interface and RGB Lighting

Learn to Surface Mount Solder with Sean Hodgins

Sean Hodgins has a great tutorial on surface mount soldering:

FU374UFJ8UGW6FR.MEDIUM

Learn to Surface Mount Solder Using an SMD Challenge PCB

I feel like surface mount soldering has a bad reputation. It can seem daunting to someone who has never tried it. Since a lot of my project involve using surface mount components, I thought it would be a good idea to make something to inspire people to try it out (without risking expensive components or their custom project).

 FA8FTR9J8UGW710.ANIMATED.MEDIUM

Decide how you want to assemble your SMD Challenge Kit (re, the video) you can choose to use a soldering iron, or a reflow oven. They take about the same amount of time but using the soldering iron can be a little more challenging and doesn’t require a cheap toaster oven. 

FAMPGL9J8UGW6FZ.ANIMATED.MEDIUM

Parts:

Tools:

Learn to Surface Mount Solder with Sean Hodgins

Maker Faire Orlando soldering kit

MFO-SK7-03-Assembled-F-1080x550

We are proud to be a sponsor of this Maker Faire Orlando soldering kit:

Advanced soldering training at Maker Faire Orlando

For the past six years at Maker Faire Orlando, members of FamiLab have taught attendees how to solder with a cool little Makey pin with 2 self-flashing LEDs.  We’ve been asked for more advanced soldering training, and we responded with the addition of a PIC-microcontroller-based board twinkling several LEDs, and with a switch that can be used to change the LED display pattern.

We opted to design the board such that it can be used as a pendant on a necklace (lanyard) or as a keychain (especially for those of you who like large keychains). The design is a scalloped 2.7″ circle with LEDs on the outside circle, and a hole at the top for a keyring. Batteries are on the back of the board.

Resources

Maker Faire Orlando soldering kit

A Smaller, Cheaper RISC V Board

Early this year, the world of electronics saw something amazing. The RISC-V, the first Open Source microcontroller was implemented in silicon, and we got an Arduino-derived dev board in the form of the HiFive 1. The HiFive 1 is just a bit shy of mindblowing; it’s a very fast microcontroller that’s right up there with…

via A Smaller, Cheaper RISC V Board — Hackaday

A Smaller, Cheaper RISC V Board

LoFive RISC-V board now on GroupGets

LoFive RISC-V dev board designed by Michael Welling with KiCad is now on GroupGets:

8abaa9b3ce3ab723089fdb42a00d1b5a008dad5b

LoFive is a small board based on the SiFive Freedom E310 open source SoC

LoFive_LED

Specifications

  • MCU – SiFive Freedom E310 (FE310) 32-bit RV32IMAC processor @ up to 320+ MHz (1.61 DMIPS/MHz)
  • Storage – 128-Mbit SPI flash (ISSI IS25LP128)
  • Expansion – 2x 14-pin headers with JTAG, GPIO, PWM, SPI, UART, 5V, 3.3V and GND
  • Misc – 1x reset button, 16 MHz crystal
  • Power Supply – 5V via pin 1 on header; Operating Voltage: 3.3 V and 1.8 V
  • Dimensions – 38 x 18 mm (estimated)
  • License – CERN Open Hardware Licence v1.2

LoFive-Schematics-600px

The design files are available on GitHub:

mwelling/lofive

LoFive RISC-V board now on GroupGets

Making A Pickit 3 Clone

509.jpg

Making A Pickit 3 Clone

After using the Microchip tools to program and debug the projects I work on, I wondered about creating my own programming/debugging module that I could put on my own boards – just like Microchip does with their starter kits and such.

pcb_1.jpg

I decided to use the open-source EDA program Kicad to design a 4 layer SMD project. I had only used it for 2 layer PTH designs previously, but wanted to see how it would do in something a little more complex than the ones I had already done. Here is a link to the completed Kicad project files

Sybex23 has shared the board on OSH Park:

PICKIT 3 Programmer

979e83d73b177814d75f1febb72135ea.png

Order from OSH Park

Making A Pickit 3 Clone