DC26: overview of the DC503 party badge

From Nisha Kumar:
DjT3Kg5VsAAS8bW
An overview of the DC503 party badge as seen at DefCon 2018

Hi! My name is Nisha, and I made a party bangle for my friend, Miki, to take with her to DefCon25. It was my first fully-formed electronics project and it posed some interesting challenges due to its unusual form factor. You can read about my experiences with that project here.

Soon after DefCon25, I was approached by r00tkillah to make over a 100 of something similar for the DC503 party at DefCon26. The plan was to combine the power of the BMD-300 SoC by Rigado used in the Wagon Badge from the previous year with my Neopixel bangle form factor. We would call it “The Banglet” and it was going to be awesome.

banglet_shell_500

In passive mode, the banglet’s LEDs light up when detecting nearby Bluetooth devices. The number of LEDs that are lit correspond to the number of BT devices detected and their colors are based on each device’s mac address.

DC26: overview of the DC503 party badge

iceRadio SDR project

Software Defined Radio (SDR) project by Eric Brombaugh:
iceRadio.jpg

iceRadio

This is a test prototype for experimenting with Software Defined Radio (SDR). It is composed of several boards that are described in detail elsewhere on this site:

Combined with suitable firmware and FPGA design, these boards comprise a receiver capable of capturing 20kHz of signal from DC to over 1GHz, demodulating it with a variety of formats and driving high-quality audio.

iceRadio_system.png

Tuner

RF input from the antenna can optionally be tuned down from VHF/UHF frequncies to an IF frequency in the HF range before passing to the ADC.

ADC

Raw HF or downconverted VHF at an IF of 5MHz is digitized to 14-bit resolution. The maximum input signal allowed without exceeing the range of the ADC puts the 0dBfs point of this system at -10dBm in 50 ohms. The ADC runs at 40MSPS with a resolution of 10 bits, providing approximately 60dB of dynamic range and 20MHz of bandwidth which places the quantization noise floor at about -70dBm.

FPGA

From the ADC, data passes into the FPGA. This is an iCE5LP4k part which provides 20 4kb RAM blocks and 4 16×16 MAC blocks which are essential for the DSP required for the downconversion. In the FPGA the ADC data is pre-processed to a sample rate appropriate for the MCU. Figure 2 below shows the primary components of the FPGA design.

iceRadio_fpga

The C and Verilog source code is available on GitHub:

emeb/iceRadio

iceRadio SDR project

An Especially Tiny And Perfectly Formed FM Bug

It used to be something of an electronic rite of passage, the construction of an FM bug. Many of us will have taken a single RF transistor and a tiny coil of stiff wire, and with the help of a few passive components made an oscillator somewhere in the FM broadcast band.

via An Especially Tiny And Perfectly Formed FM Bug — Hackaday

An Especially Tiny And Perfectly Formed FM Bug

Dock for Onion Omega2

Valerio Backslashnew has designed a small dock for the Onion Omega 2 and 2+:

collage

My Omega 2/2+ dock\new

I needed the smallest dock i could do, that featured:

  • Ethernet
  • Type A USB host
  • Micro USB for power

Here’s what i came up with, i called it dock\new.

layout

It has an onboard linear voltage regulation (i didn’t bother going with a switching one for such low power), magnetics integrated in the RJ45 connector to save space, USB host ESD protection (diode array), USB host PTC fuse.

On the left side there is the RJ45 connector and nothing on the back side of the board, so that you can easily access the MicroSD card on the Omega 2+.

On the right side (the antenna side of the omega) you have the USB type A connector, facing outwards, and the microusb connector for power, facing inwards.

The project is open source (CC-BY-SA 4.0), and the KiCad schematics, board layout and the other files are available on GitHub:

5N44P/omega-dock-new

schematic.jpg

5N44P has shared the board on OSH Park:

omega-dock-new.kicad_pcb

d9fc59e0f065521992ed510307a3f2bd.png
Order from OSH Park

Dock for Onion Omega2

LTE Arduino GPS Tracker and IoT Dashboard

Timothy Woo shows how to make a powerful Arduino GPS tracker that posts data to the cloud via LTE and view data graphically on IoT dashboards:
7510911513094940025

LTE Arduino GPS Tracker + IoT Dashboard

Hey guys! In this tutorial we’ll be creating a GPS tracker using the Botletics SIM7000 LTE shield and an Arduino and view the data on two free IoT dashboards. I’ll start off by explaining how to get everything set up and posting data to the cloud, then I’ll move into how to set up the IoT dashboards to view data. The two dashboards we will be looking at are Freeboard.io and ThingsBoard.io.

Since this tutorial is a follow-up of my first Instructable on using the Botletics LTE/NB-IoT shield for Arduino so if you haven’t already, please read it to get a good overview of how to use the shield and what it’s all about. In this tutorial I’ll focus on IoT data logging, and specifically, GPS and temperature tracking and provide you will all the code and guidance you’ll need to hit the road and test it out! It’ll be a decently lengthy tutorial so sit tight and grab some coffee!

Although I’ll be mainly focusing on the LTE shield that I personally designed and built, everything here (including the Github Arduino library) should work on SIMCom’s 2G and 3G modules like the SIM800/808/900/5320 as well since it’s just an updated version of the Adafruit FONA library. Regardless of hardware the concept is exactly the same and you can do lots of cool stuff with this, including sensor data logging, remote weather monitoring, auto theft karma GPS tracking, etc… so read on!

LTE Arduino GPS Tracker and IoT Dashboard

OSHWi Octopus Badge by Gustavo Reynaga

Alex Glow of Hackster.io takes a look at the OSHWi octopus badge designed by Gustavo Reynaga:

Screenshot from 2017-12-23 09-39-22.png

The design files and source code are available on GitHub:

hulkco/oshwi_2017

GReynaga has shared the board on OSH Park:

001_Hackster_Rev1.kicad_pcb

Oshwi Badge HACKSTER Version Rev 1

 

3eb6bc329e2a6b344b29db05cb1c8f17

Order from OSH Park

OSHWi Octopus Badge by Gustavo Reynaga

SoftRF LoRa

SoftRF is an open project for aircraft collision avoidance avionics and has designed an adapter for RFM9x to fit NRF905 module dimensions and pinout:

SoftRF-Case-v4-Exterior.jpg

SoftRF

Multifunctional DIY IoT-based general aviation proximity awareness system.

Features:

  • 2-way raw data bridge between 868/915 MHz radio band and Wi-Fi ;
  • standalone, battery powered, compatible proximity awareness instrument that fits typical 2.25 inches hole ;
  • lightweight version to carry onboard of an UAV.

SoftRF has shared the board on OSH Park:

SoftRF-LoRa v1.1
5f73fc41f6451b8e917ee454e7715b05
Order from OSH Park

SoftRF LoRa