EZ Fan2 Tiny Raspberry Pi Fan Controller

Jeremy Cook created this tiny PCB for controlling small cooling fans or other motors:

What is it?

PCB originally designed to control cooling fans on Raspberry Pi boards, but can be used with other small motors or DC loads. Includes a flyback diode to safely dissipate inductive voltage spikes.

Can also work with Arduino and other such dev boards.Why did you make it?

Wanted a way to control cooling fans off of a Raspberry Pi. While some fans have PWM inputs, some do not and cannot normally be controlled. This transistor board works well with the GPIO fan control option in Raspberry Pi OS (which turns it fully on and fully off).

Not a full motor driver (i.e. it only drives in one direction) but can be used with other simple DC motors as well. Includes a resistor and flyback diode.

What makes it special?

It’s very, very small, even compared to a prior THT version. It should therefore be able to fit inside nearly any case. The optional 90º headers are even spec’d out to be low profile.

Boards come fully assembled with or without headers depending on the option selected, and appearance of the boards may vary. Options also available for female-female wires as needed, and/or clear heat shrink.

Read more on Tindie…

EZ Fan2 Tiny Raspberry Pi Fan Controller

Jon Evans talks KiCad V6

KiCad developer Jon Evans joins the Contextual Electronics podcast hosted by Chris Gammell:

CEP014 – Moving to KiCad V6 with Jon Evans

Jon Evans is a longtime developer on the KiCad project and practicing EE at Formlabs. He joins Chris to talk about the future of KiCad, including features that are coming in V6.

Jon Evans talks KiCad V6

Hackaday Prize: deadline on July 19th

The deadline for challenge #2 of the Hackaday Prize is next Monday, July 19th:

Refresh Work-From-Home Life

Enter one or more of this year’s challenges for the chance to win cash prizes and move on to the finals, where our panel of judges will decide on the grand prize winner! With $25,000 on the line, and numerous other opportunities to win, there’s no reason not to enter!

Ultimately though, the Hackaday Prize isn’t about winning money. It’s about creating impactful change through the kind of hardware innovation only our amazing community can provide.

Hackaday Prize: deadline on July 19th

Fractal Vise Holds Odd-Shaped Objects Tight

Trying to solder an oddly shaped art PCB board? This 3D printed visa could help:

A regular vice is great if you want to clamp rectangular objects, but it can fall down a little with more complex shapes. Inspired by an ancient vise [Chris Borge] whipped up his own 3D-printed fractal clamping tool.

The inspiration for this one comes from the [Hand Tool Rescue] video that shows of the clever mechanism. The vice uses a series of interlocking parts that can freely articulate to grip the object of interest via several protruding fingers. In reproducing the design, [Chris] had some issues initially with the joints, but settling on a dovetail similar to that of the original metal vice which got things working nicely.

Read more on Hackaday…

Fractal Vise Holds Odd-Shaped Objects Tight

Fibonacci512 giant LED disc

From Jason Coon of Evil Genius Labs:

Fibonacci512 is a giant, beautiful 320mm circular disc with 512 RGB LEDs surface mounted in a Fibonacci distribution. Swirling and pulsing like a colorful galaxy, it’s mesmerizing to watch.

It consists of 512 WS2812B-Mini 3535 RGB LEDs, arranged into a circular Fermat’s spiral pattern.

I have created several LED art pieces in Fibonacci patterns. They are all very labor intensive to create, and so are fairly expensive and limited in quantity. I wanted to come up with a Fibonacci layout that was at least slightly easier to create, and therefore more affordable.

I have RGB LEDs in just about every form they come: strips, strings, rings, discs, etc. The LEDs on most discs are arranged in very regular rings. Fibonacci512 is different. The LEDs are arranged in a Fibonacci distribution. The makes the layout very organic and seemingly messy. But with the proper animation, spiral patterns emerge with spectacular results.

Each of the 512 WS2812B-Mini 3535 RGB LEDs has its own decoupling capacitor built in. The top and bottom of the PCB are large 5V and GND planes, to allow for the large amount of current required by the 512 LEDs. The PCB is split into four separate data lines to allow for higher frame rates when driven by a microcontroller that supports the FastLED library’s parallel output, such as ESP8266, ESP32, Teensy, etc. The max theoretical frame rate with four way parallel output is ~260 FPS. Each of the four data lines has a separate four-pin headers provided for 5V, Data In (to the section), Data Out (from the previous section) and GND. The last Data Out pin can be used to connect to even more LEDs. There are also small jumper solder pads that can be bridged to drive the whole panel with a single pin (max ~65 FPS), or two pins (max 130 FPS).

Read more on Tindie…

Fibonacci512 giant LED disc

Modchip style SOIC8 EEPROM to Stemma QT adapter


Francois Gervais
designed this clever flexible PCB:

Modchip style SOIC8 EEPROM to Stemma QT adapter

The design is available as a shared project:

Modchip style SOIC8 EEPROM to Stemma QT adapter

Open Hardware 101: An Introduction for Policymakers

Great set of talks from Javier Serrano of CERN, Rick O’Conner of OpenHW Group, Calista Redmore of RISC-V International, and more:

One of the most advanced areas in Open Hardware is open chips, a critical dependency for the European Union. Open chips have the potential to be beneficial in terms of their adaptability, speed and potential for increasing digital sovereignty in several sectors, including automotive industry, edge computing, data storage solutions, aerospace, energy or health.

By drawing lessons from Open Source Software, Europe can realise vast value from Open Hardware for its economy and citizens. There is a need for more debate on opportunities and challenges of Open Hardware, its potential for scaling up and supporting more collaborative and open infrastructure underlying all other layers of the digital ecosystem we know.

Open Hardware 101: An Introduction for Policymakers

Open Source Hardware Certifications for May 2021

Salman Faris of OSHWA write about the latest ceritied Open Source Hardware in Make:

Open Source Hardware Certifications for May 2021

In May 2021 the Open Source Hardware Association (OSHWA) certified a wide variety of hardware as open source.  we will have a certified variety collection of Open Source Hardwares, Let’s take a look! (And remember, certification is a free and easy way to show that your hardware complies with the open source hardware definition.)

First, many makers are interested in space and astronomy. The Astrohat is a Raspberry Pi 4 compatible hat for all your astronomy equipment. It comes with six 12V controllable outputs @3A each with current monitoring (2 PWM controllable for dew heaters), a temperature, humidity and pressure sensor port (external module), one adjustable 6-12 V output, and one port for serial communication and power to external device like a GPS. It’s the 5th piece of certified hardware from Greece. You can find the details here.

Read more…


Open Source Hardware Certifications for May 2021