Soldering Kit for Doctor Who Fans

From Ken Olsen of Maker’s Box on Tindie:

Soldering Kit for Doctor Who Fans

Show off your Doctor Who cred with a DIY badge you can solder yourself. Powered by an Attiny85, lights and sounds like an 8-bit TARDIS. CR2032 Battery not included.

Kit Contains:

Soldering Kit for Doctor Who Fans

Robotics Club Teaches Soldering

From Al Williams on the Hackaday blog:

Robotics Club Teaches Soldering

Oregon State University must be a pretty good place to go to school if you want to hack on robots. Their robotics club, which looks active and impressive, has a multi-part video series on how to solder surface mount components that is worth watching. [Anthony] is the team lead for their Mars Rover team and he does the job with some pretty standard-looking tools.

The soldering station in use is a sub-$100 Aoyue with both a regular iron and hot air. There’s also a cheap USB microscope that looks like it has a screen, but is covered in blue tape to hold it to an optical microscope. So no exotic tools that you’d need a university affiliation to match.

Even if you’ve done a lot of SMD soldering, you can always pick up new tips and tricks. There’s lots of flux, of course, and careful alignment before you secure the component down. We know the feeling of leaving a bad solder joint long enough to go secure the other pads and then cleaning it up at the end.

Robotics Club Teaches Soldering

Unofficial Remoticon 2020 badge by Thomas Flummer in “After Dark”

The annual Hackaday Supercon is taking place as Remoticon this year and the talented Thomas Flummer has design a PCB badge based on the SMD challenge that can be further customized in KiCad!

The board can be ordered from the shared project page in “After Dark”:

NOTE: make sure to check “After Dark” in the cart

Unofficial Remoticon 2020 badge by Thomas Flummer in “After Dark”

Easy Joule Thief Soldering Kit

The MakersBox has a great kit for beginners on Tindie:

Easy Joule Thief Soldering Kit

The perfect night-light, and a great way to learn how to solder.

The Joule Thief is a clever little circuit that can light a LED with a battery that is nearly dead. It does this with a pair of opposing magnetic fields. I like this circuit because it is simple to build, yet demonstrates some very complex electrical behavior.

I’ve designed a printed circuit board to help make this easier to build for beginning Makers. I used open source KiCAD software to lay it out (a future Instructable?), and OSHPark to manufacture it. If you want to just wire one up without the board, check out Angelo’s Instructable which uses essentially the same circuit.

The kit contains:

  • 1 – PCB, https://oshpark.com/shared_projects/rLeF8F88
  • 2 – AA Battery Clip, Keystone Electronics #92
  • 1 – Ferrite Tubular Bead, Digi-Key 240-2301-ND or similar
  • 1 – SPDT slide switch, E-Switch EG1218
  • 1 – 1K resistor 1/8 – 1/4 W
  • 1 – PN2222 Resistor, Fairchild Semiconductor PN2222ATA
  • nanoseconds (about 24″) of insulated wire. Two different colors are helpful.
  • 1 – LED, 10mm white (or use your own)
Easy Joule Thief Soldering Kit

Simultaneous Soldering Station

https://hackaday.io/project/171848-soldering-rt1

Soldering irons are a personal tool. Some folks need them on the cool side, and some like it hot. Getting it right takes some practice and experience, but when you find a tip and temp that works, you stick with it. [Riccardo Pittini] landed somewhere in the middle with his open-source soldering station, Soldering RT1. When you start it up, it asks what temperature you want, and it heats up. Easy-peasy. When you are ready to get fancy, you can plug in a second iron, run off a car battery, record preset temperatures, limit your duty-cycle, and open a serial connection.

The controller has an Arduino bootloader on a 32u4 processor, so it looks like a ProMicro to your computer. The system works with the RT series of Weller tips, which have a comprehensive lineup. [Riccardo] also recreated SMD tweezers, and you can find everything at his Tindie store.

Soldering has a way of bringing out opinions from novices to masters. If we could interview our younger selves, we’d have a few nuggets of wisdom for those know-it-alls. If ergonomics are your priority, check out TS100 3D-printed cases, which is an excellent iron, in our opinion.

Read more: Simultaneous Soldering Station — Hackaday

Simultaneous Soldering Station

Printed TS100 Case Beats the Heat with a Bearing

As we’ve said many times in the past, the creation of custom cases and enclosures is one of the best and most obvious applications for desktop 3D printing. When armed with even an entry-level printer, your projects will never again have to suffer through the indignity of getting hot glued into a nondescript plastic box. But if you’re printing with basic PLA, you need to be careful that nothing gets too hot inside.

Which was a problem when [Oleg Vint] started work on this 3D printed case for the popular TS100 soldering iron. But with the addition of a standard 608 bearing, the case provides a safe spot for the iron to cool off before it gets buttoned back up for storage. Of course, you can also use the flip-out perch to hold the iron while you’re working.

As [Oleg] explains on the Thingiverse page for the case, he actually blended a few existing projects together to arrive at the final design. Specifically, the idea of using the 608 bearing came from a printable TS100 stand originally designed in 2017 by [MightyNozzle]. Released under Creative Commons, [Oleg] was able to mash the bearing stand together with elements from several other printable TS100 cases to come up with his unique combined solution.

via Printed TS100 Case Beats the Heat with a Bearing — Hackaday

Quote

The Fascinating World Of Solder Alloys And Metallurgy

Solder is the conductive metal glue that one uses to stick components together. If you get the component and the PCB hot enough, and melt a little solder in the joint, it will stay put and conduct reliably. But it’s far from simple.

There are many different solder alloys, and even the tip of the soldering iron itself is a multi-material masterpiece. In this article, we’ll take a look at the metallurgy behind soldering, and you’ll see why soldering tip maintenance, and regular replacement, is a good idea. Naturally, we’ll also touch upon the role that lead plays in solder alloys, and what the effect is of replacing it with other metals when going lead-free. What are you soldering with?

Intermetallic Compounds

Soldering, and its higher temperature cousin, brazing, are one of essentially two ways create metal-to-metal bonds, and they allow the use of low-temperature techniques that still create relatively stable bonds between two metal surfaces. Soldering is also an interesting chapter in the field of metallurgy, on account of it being based around so-called intermetallic compounds (IMCs).

Welding stands in contrast to soldering, where high temperatures melt the metal on both sides of the pieces that are being joined, permanently fusing them. Welding is a high-strength, high-reliability way of joining metal pieces, but is unfortunately wholly unsuited for delicate electronics where excess heat can damage parts and the goal is more to ‘glue’ electrically conducting elements together than to melt them together.

This also leads us to the reason why soldering and IMCs are such a source of trouble, to the point where IMCs are referred to as ‘evil’. IMCs are essentially bits of the two metal surfaces on either side dissolved into the solder, causing enough of a joining that each side of the joint is more or less stably fused with the solder. Unfortunately such an IMC is a far cry from the stable solid metal of a welding joint, and as a result can be brittle depending on exactly which metals were involved in the solder alloy.

But the IMCs formed in soldering are strong enough, and their formation is at the root of why every solder alloy uses tin. Tin has the property that it is very good at letting other metals dissolve into it. In fact, it’s possible to solder with pure tin, although as we’ll see below, most solder is improved by adding other metals into the mix.

via The Fascinating World Of Solder Alloys And Metallurgy — Hackaday

Quote

Concrete Solder Squid is a Solid Solution

Although it’s possible to buy a soldering setup out of the box, the one that works for you will likely develop over time. Honestly, it may never stop evolving. Sure, you can start with el-cheapo helping hands or a nice hobby vise, but it probably won’t end there. Why? Because no one of these tools will be right for all applications, unless you plan to solder the same thing over and over again. Sometimes it’s just easier to alligator clip a board in place than to slowly manipulate the jaws of a vise, but those helping hands have such a limited range of motion.

Have you been meaning to build a soldering squid out of coolant hose because that stuff just looks so dang cool and bendy? Well, then let Hackaday alum [JeremySCook] show you how it can be done. A few years ago he built a similar squid with a wooden base, but it just isn’t heavy enough, so he redesigned it with a concrete base. He took the opportunity to make some nice tweaks, like zip-tying a small PC fan and 9 V to make an endlessly repositionable ventilation system, and adding a big clip in the back for extra stability while soldering. And of course, threading the solder spool on to one of the hoses is genius.

If you follow [Jeremy] at all, you know he’s been playing around with concrete for a while now, and it’s neat to see him cement his devotion to the stuff by using it in the pursuit of better tools. He’s got the files for the printed mold up on GitHub, and the build video after the break should be all set up by now.

via Concrete Solder Squid is a Solid Solution — Hackaday

Quote

Challenge Your Soldering Skills With Snowy0201

From  on the Tindie blog:

Snowy0201_from_NWMaker_on_Tindie.jpg

The Snowy Owl is the rebel of owls. They live in the north near arctic regions of the world, and unlike other owls, they are active during the day instead of the night. Owls in general are pretty great, which is why this Snowy Owl version of the Surface Mount Device 0201 soldering challenge kit caught my eye.

For this challenge, the resistors on the back of the owl have been changed to a 0201 packages for an additional level of difficulty. These are cellphone-level miniaturization so it will be a challenge. A dual inverter NL27WZ04 is used to implement the ring oscillator, which drives the blinking LEDs.

Think you’re up to the challenge?

 

Challenge Your Soldering Skills With Snowy0201

Competitive Soldering is Now a Thing

At Hackaday, we’re constantly impressed by the skill and technique that goes into soldering up some homebrew creations. We’re not just talking about hand-soldering 80-pin QFNs without a stencil, either: there are people building charlieplexed LED arrays out of bare copper wire, and using Kynar wire for mechanical stability. There are some very, very talented people out there, and they all work in the medium of wire, heat, and flux.

At this year’s DEF CON, we opened the floodgates to competitive soldering. Along with [Bunny] from Hardware Hacking Village and the many volunteers from the HHV and Soldering Skills Village, dozens competed to solder up a tiny kit full of LEDs and microscopic resistors.

The kit in question was an SMD Challenge Kit put together my MakersBox, and consisted of a small PCB, an SOIC-8 ATtiny, and a LED and resistor for 1206, 0805, 0603, 0402, and 0201 sizes. The contest is done in rounds. Six challengers compete at a time, and everyone is given 35 minutes to complete the kit.

via Competitive Soldering is Now a Thing — Hackaday

Quote