New Hackaday Contest: Tell Time!

Clocks. You love ’em, we certainly love ’em. So you hardly need a reason to take on a new clock build, but it makes it much sweeter when you know there’s a horde of people waiting to fawn over your creation. Hackaday’s Tell Time Contest is a celebration of interesting timepieces. Show off a clever way to mark the passage of time and gain the adoration of your peers, and maybe even score a prize!

The Rotating Moon Clock is an interesting take on a timepiece

From now until January 24th, you can enter your Hackaday.io project by using the “Submit project to…” menu on the left sidebar of your project page. There is only one main constraint: it needs to somehow represent time. Microseconds or millennia, minutes until the next bus arrival or centuries until Pluto completes its next orbit, we don’t care as long as you find it interesting.

Document your timepiece with pictures, a description, and all of the technical details. Three outstanding entries will each receive a $100 cash prize, based on craftsmanship, function, and creativity.

Tick-tock… don’t delay. Time’s slipping away to have your quirky clock immortalized on Hackaday.

via New Contest: Tell Time — Hackaday

Quote

Update from Apertus on the AXIOM open source cinema camera

axiom-remote

Apertus is designing an open source 4K cinema camera called AXIOM.   We are excited to see the latest news from the project:

AXIOM Team Talk Volume 15.2 is out!

Max and Sebastian again dive into recent project developments like Google Summer of Code projects and the AXIOM Remote.

Once again apertus° participated in Google’s sponsored program for students working with open source projects like this one. Here is a brief insight into what was worked on this year for Summer of Code. Six student slots were filled with excellent applications and four students finished the program successfully.

Google Summer of Code student Fares Mehanna

Google Summer of Code student Fares Mehanna.

 

Their projects deal with USB3 connectivity of the AXIOM BetaJPEG1992 lossless encoding inside the AXIOM Beta’s FPGA, improvements to AXIOM Remote and the camera’s internal central control daemon.

There has been good development progress in several areas with the camera control device, the AXIOM Remote. The device features a small display with graphical user interface, a central rotary encoder dial and physical buttons providing haptic feedback where a touchscreen (think smartphone app) simply couldn’t. There is an enclosure concept, electronics prototype and software running on the device prototype already.

Update from Apertus on the AXIOM open source cinema camera

Latch-Up 2020

latchup_logo
The next Latch-Up Conference will be in Cambridge, MA (USA) on April 11th-12th, 2020.
 
The event is organized by the Free and Open Source Silicon (FOSSi) Foundation and is a weekend of presentations and networking for the open source digital design community, much like ORConf in Europe.
Follow @LatchUpConf on Twitter for updates.

Videos of the 2019 conference are in the Latch-Up 2019 playlist on the FOSSi Foundation’s YouTube channel:

Latch-Up 2020

Hackaday Supercon: introduction to the state of the art in open-source FPGAs

Hackaday writes about an interesting talk from the recent Supercon:

David Williams Is “FPGA-Curious” — Hackaday

If you hadn’t noticed, we had a bit of an FPGA theme running at this year’s Superconference. Why? Because the open-source FPGA toolchain is ripening, and because many of the problems that hackers (and academics) are tackling these days have become complex enough to warrant using them. A case in point: David Williams is a university professor who just wanted to build a quadruped robotics project. Each leg has a complex set of motors, motor drivers, sensors, and other feedback mechanisms. Centralizing all of this data put real strains on the robot’s network, and with so many devices the microcontrollers were running out of GPIOs. This lead him to become, in his words, “FPGA-curious”.

If you’re looking for a gentle introduction to the state of the art in open-source FPGAs, this is your talk. David covers everything, from a bird’s eye view of hardware description languages, through the entire Yosys-based open-source toolchain, and even through to embedding soft-CPUs into the FPGA fabric. And that’s just the first 18 minutes. (Slides for your enjoyment, and you can watch the talk embedded below the break.)

Screenshot from 2019-12-06 16-22-42

The second half of the talk is more about his personal experience and advice based on the last year or so of his experience going from FPGA newbie to master of his own robot. He highlights the versatility of a soft-CPU in an FPGA versus a pre-baked microcontroller solution. With the microcontroller you get all of the peripherals built into the silicon, but with the FPGA you get to write your own peripherals. Want a 10-wire SPI-like bus? Just code it up. Your peripherals are as simple or complex as you need them to be.

On the hardware side, David touts the PMOD standard (a man after our own heart!) and points out the large ecology of PMOD-compatible devices out there. Going for a plug-in solution also means that your engineering job is reduced to building a carrier board that can seat the FPGA brainboard of your choosing and interface it with a bunch of PMODs. It’s hard to get much simpler than that.

 

 

Quote

The Open Book Feather e-reader

Joey Castillo has created an awesome open hardware reading device:

6740051575408481594

The Open Book Feather

The Open Book is an open-hardware device for reading books in all the languages of the world. It includes a large screen and buttons for navigation, as well as audio options for accessibility and ports to extend its functionality. Its detailed silkscreen, with the all the manic energy and quixotic ambition of a Dr. Bronner’s bottle, aims to demystify the Open Book’s own design, breaking down for the curious reader both how the book works, and how they can build one for themselves.

9562961575408621144

At the core of the Open Book is a SAMD51J19A microcontroller, a powerful ARM Cortex M4 with 512 KB of Flash and 192 KB of RAM. It has 51 pins of GPIO, and the Open Book uses all of them for peripherals and possibilities:

A 400×300 black and white e-paper screen enables the core experience of, y’know, reading.

A MicroSD slot allows for plenty of external storage for files. An offline copy of Wikipedia fits in 64 gigs — Hitchhiker’s Guide, anyone?

User input comes from seven buttons on a shift register, plus an eighth button tied directly to one of the SAMD51’s interrupt pins.

A dedicated flash chip for languages gives the book room to store glyphs and Unicode data for every language in the Basic Multilingual Plane (which is most of the languages in use today).

A 3.5mm audio jack

Screenshot from 2019-12-05 19-15-14.png

Joey (@josecastillo) did a demo of the the Open Book e-reader on Adafruit Show-n-Tell last night (jump to 15 min 59 sec):

 

The Open Book Feather e-reader

KiCad Action Plugins

The last two years has been a particularly exciting time for KiCad, for users, casual contributors, and for the core developers too. Even so, there are many cool new features that are still in process. One bottleneck with open-source development of complex tools like KiCad is the limited amount of time that developers can devote for the project. Action plugins stand to both reduce developer load and increase the pace of development by making it easier to add your own functionality to the already extensible tool.

Sometime around version 4.0.7 (correct us if we’re wrong), it was decided to introduce “action plugins” for KiCad, with the intention that the larger community of contributors can add features that were not on the immediate road map or the core developers were not working on. The plugin system is a framework for extending the capabilities of KiCad using shared libraries. If you’re interested in creating action plugins, check out documentation at KiCad Plugin System and Python Plugin Development for Pcbnew. Then head over to this forum post for a roundup of Tutorials on python scripting in pcbnew, and figure out how to Register a python plugin inside pcbnew Tools menu.

Since version 5.0, we’ve seen an explosion of extremely useful action plugins for KiCad that have added some very useful bells and whistles. The KiCad website lists a couple of external tools, but there’s a lot of action happening out there, so we decided to round up some of the more useful ones.

via KiCad Action Plugins — Hackaday

Also, the Teardrop plugin could be useful for those using our 2 layer Flex service:

In the early days, PCB fabs often had yield issues due to offset drill holes, particularly on vias and micro-vias. One trick that PCB designers used to mitigate this problem was to use “teardrops”. The area around the pad or via that connected to the track was made into a teardrop shape, ostensibly in the hope that it would improve matters. Fabs nowadays do a pretty good job due to improved processes and accurate machines, so the jury is still out on the use of teardrops, but KiCad does have a Teardrop plugin, in case anyone wants to use it. Combined with smooth, rounded tracks, we’re guessing teardrops would be pretty helpful in the artistic PCBs department.

 

Quote