Hackaday Superconference: An Analog Engineer Dives Into RF

Those of us who work with electronics will usually come to the art through a particular avenue that we master while imbibing what we need from those around it. For example, an interest in audio circuitry may branch into DSP and microcontrollers as projects become more complex. Some realms though retain an aura of impossibility, a reputation as a Dark Art, and chief among them for many people is radio frequency (RF). Radio circuitry is often surprisingly simple, yet that simplicity conceals a wealth of complexity because the medium does not behave in the orderly manner of a relatively static analogue voltage or a set of low-frequency logic levels.

Chris Gammell is a familiar face to many Hackaday readers for his mastery of much electronic trickery, so it comes as something of a surprise to find that RF has been one of the gaps in his knowledge. In his talk at the Hackaday Superconference he took us through his journey into RF work, and the result is a must-watch for anyone with a curiosity about radio circuitry who didn’t know where to start.

via Hackaday Superconference: An Analog Engineer Dives Into RF — Hackaday

Quote

Hackaday: DIY Scalar Network Analyzer

[Steven Merrifield] built his own Scalar Network Analyzer and it’s a beauty! [Steve]’s SNA has a digital pinout matching a Raspberry Pi, but any GPIO could be used to operate the device and retrieve the data from the ADC. The design is based around a few tried and true chips from Analog Devices. He’s taken some care to design it to be nice and accurate which is why he’s limited it to 1kHz to 30Mhz. We think it’s quite a fetching board once the shielding is in place.

via DIY Scalar Network Analyzer — Hackaday

Quote

Bunnie at 36C3: Open Source is Insufficient to Solve Trust Problems in Hardware

On his talk this year at the 36C3, [bunnie] showed a detailed insight of several attack vectors we could face during manufacturing. Skipping the obvious ones like adding or substituting components, he’s focusing on highly ambitious and hard to detect modifications inside an IC’s package with wirebonded or through-silicon via (TSV) implants, down to modifying the netlist or mask of the integrated circuit itself. And these aren’t any theoretical or “what if” scenarios, but actual possible options — of course, some of them come with a certain price tag, but in the end, with the right motivation, money is only a detail.

Sure, none of this is particularly feasible or even much of interest at all for a blinking LED project, but considering how more and more open source hardware projects emerge to replace fully proprietary components, especially with a major focus on privacy, a lack of trust in the hardware involved along the way is surely worrying to say the least. At this point, there is no perfect solution in sight, but FPGAs might just be the next best thing, and the next part of the talk is presenting the Betrusted prototype that [bunnie] is working on together with [xobs] and [Tom Marble]. That alone makes the talk worth watching, in our view.

via 36C3: Open Source is Insufficient to Solve Trust Problems in Hardware — Hackaday

Quote

Hackaday at the 36th Chaos Communication Congress (36c3)

Drew (@pdp7) is at the Chaos Communication Congress (36c3) and so is the Hackaday community:

ccc-34c3-featured.jpg

It’s that time of year again here in Germany. The mulled wine flows all night long at the Christmas markets, the Krampus runs wild in the streets, and hackers are perched frantically behind their keyboards and soldering irons, trying to get their last minute projects “finished” for the 36th annual Chaos Communication Congress (36C3) in Leipzig.

We’ll have an assembly for all fans and friends of the Jolly Wrencher, so if you’re coming to Congress, you can come join us or at least stop by and say hi. [Elliot] and [Sven] and a number of Hackaday.io luminaries will be on hand. (Ask us about secret stickers and an as-yet unannounced upcoming Hackaday conference.)

Even if you’re not able to make it, you should keep your eyes on Hackaday from the 27th to the 30th, because we’ll be reporting on the best of Congress. But you don’t have to take our word for it: the Chaos Computer Club makes all of the talks available on livestream during the event, many with simultaneous translation, and final edited versions often appearing just a few hours afterwards.

We’ve looked through the schedule, and it’s going to be a hum-dinger! Gather ’round the glowing box with your friends at your own local hackerspace, or call in sick from work and make yourself some popcorn. This is must-see nerd TV.

Whether you’ve been naughty or nice, swing by our assembly if you’re going to be in Leipzig for the last few days of 2019. See you there!

via Hackaday is Going to the 36th Chaos Communication Congress — Hackaday

Quote

Interview: FieldKit Team the Morning After Winning the 2019 Hackaday Prize

We caught up with Shah Selbe and Jacob Lewallen the morning after their project, FieldKit, won the Hackaday Prize. FieldKit is an open-source field-based research data collection platform. Which is basically a lot of fancy words for saying it’s a system for collecting sensor data in the field without being snagged by the myriad of problems associated with putting electronics in remote locations. It’s a core project of Conservify, a non-profit organization that seeks to empower conservation research.

via Interview: FieldKit Team the Morning After Winning the 2019 Hackaday Prize — Hackaday

Quote

Weird World of Microwaves Hack Chat

Join us on Wednesday, December 18 at noon Pacific for the Weird World of Microwaves Hack Chat with Shahriar Shahramian! We’ve been following him on The Signal Path for years and are excited to pick his brain on what is often considered one of the dark arts of electronics.

No matter how much you learn about electronics, there always seems to be another door to open. You think you know a thing or two once you learn about basic circuits, and then you discover RF circuits. Things start to get a little strange there, and stranger still as the wavelengths decrease and you start getting into the microwave bands. That’s where you see feed lines become waveguides, PCB traces act as components, and antennas that look more like musical instruments.

via Weird World of Microwaves Hack Chat — Hackaday

Quote

Time lapse build of Retro CPC Dongle

So the next build of the CPC2 is done. I recorded the process with a time-lapse camera because it’s hard to make a 7 hour build entertaining. Each second of video is 30 seconds of assembly time, so this 7-hour build ended up at 7m19s of timelapse, after cutting out the cursing and head-scratching. See if you can spot my hands start to shake at the 2-hour mark of trying to precisely place the sub-millimetre components and enjoy.

via Retro CPC Dongle – Part 41 — Intelligent Toasters

Quote

New Hackaday Contest: Tell Time!

Clocks. You love ’em, we certainly love ’em. So you hardly need a reason to take on a new clock build, but it makes it much sweeter when you know there’s a horde of people waiting to fawn over your creation. Hackaday’s Tell Time Contest is a celebration of interesting timepieces. Show off a clever way to mark the passage of time and gain the adoration of your peers, and maybe even score a prize!

The Rotating Moon Clock is an interesting take on a timepiece

From now until January 24th, you can enter your Hackaday.io project by using the “Submit project to…” menu on the left sidebar of your project page. There is only one main constraint: it needs to somehow represent time. Microseconds or millennia, minutes until the next bus arrival or centuries until Pluto completes its next orbit, we don’t care as long as you find it interesting.

Document your timepiece with pictures, a description, and all of the technical details. Three outstanding entries will each receive a $100 cash prize, based on craftsmanship, function, and creativity.

Tick-tock… don’t delay. Time’s slipping away to have your quirky clock immortalized on Hackaday.

via New Contest: Tell Time — Hackaday

Quote

Hackaday Supercon: introduction to the state of the art in open-source FPGAs

Hackaday writes about an interesting talk from the recent Supercon:

David Williams Is “FPGA-Curious” — Hackaday

If you hadn’t noticed, we had a bit of an FPGA theme running at this year’s Superconference. Why? Because the open-source FPGA toolchain is ripening, and because many of the problems that hackers (and academics) are tackling these days have become complex enough to warrant using them. A case in point: David Williams is a university professor who just wanted to build a quadruped robotics project. Each leg has a complex set of motors, motor drivers, sensors, and other feedback mechanisms. Centralizing all of this data put real strains on the robot’s network, and with so many devices the microcontrollers were running out of GPIOs. This lead him to become, in his words, “FPGA-curious”.

If you’re looking for a gentle introduction to the state of the art in open-source FPGAs, this is your talk. David covers everything, from a bird’s eye view of hardware description languages, through the entire Yosys-based open-source toolchain, and even through to embedding soft-CPUs into the FPGA fabric. And that’s just the first 18 minutes. (Slides for your enjoyment, and you can watch the talk embedded below the break.)

Screenshot from 2019-12-06 16-22-42

The second half of the talk is more about his personal experience and advice based on the last year or so of his experience going from FPGA newbie to master of his own robot. He highlights the versatility of a soft-CPU in an FPGA versus a pre-baked microcontroller solution. With the microcontroller you get all of the peripherals built into the silicon, but with the FPGA you get to write your own peripherals. Want a 10-wire SPI-like bus? Just code it up. Your peripherals are as simple or complex as you need them to be.

On the hardware side, David touts the PMOD standard (a man after our own heart!) and points out the large ecology of PMOD-compatible devices out there. Going for a plug-in solution also means that your engineering job is reduced to building a carrier board that can seat the FPGA brainboard of your choosing and interface it with a bunch of PMODs. It’s hard to get much simpler than that.

 

 

Quote

KiCad Action Plugins

The last two years has been a particularly exciting time for KiCad, for users, casual contributors, and for the core developers too. Even so, there are many cool new features that are still in process. One bottleneck with open-source development of complex tools like KiCad is the limited amount of time that developers can devote for the project. Action plugins stand to both reduce developer load and increase the pace of development by making it easier to add your own functionality to the already extensible tool.

Sometime around version 4.0.7 (correct us if we’re wrong), it was decided to introduce “action plugins” for KiCad, with the intention that the larger community of contributors can add features that were not on the immediate road map or the core developers were not working on. The plugin system is a framework for extending the capabilities of KiCad using shared libraries. If you’re interested in creating action plugins, check out documentation at KiCad Plugin System and Python Plugin Development for Pcbnew. Then head over to this forum post for a roundup of Tutorials on python scripting in pcbnew, and figure out how to Register a python plugin inside pcbnew Tools menu.

Since version 5.0, we’ve seen an explosion of extremely useful action plugins for KiCad that have added some very useful bells and whistles. The KiCad website lists a couple of external tools, but there’s a lot of action happening out there, so we decided to round up some of the more useful ones.

via KiCad Action Plugins — Hackaday

Also, the Teardrop plugin could be useful for those using our 2 layer Flex service:

In the early days, PCB fabs often had yield issues due to offset drill holes, particularly on vias and micro-vias. One trick that PCB designers used to mitigate this problem was to use “teardrops”. The area around the pad or via that connected to the track was made into a teardrop shape, ostensibly in the hope that it would improve matters. Fabs nowadays do a pretty good job due to improved processes and accurate machines, so the jury is still out on the use of teardrops, but KiCad does have a Teardrop plugin, in case anyone wants to use it. Combined with smooth, rounded tracks, we’re guessing teardrops would be pretty helpful in the artistic PCBs department.

 

Quote