1Bitsy 1UP handheld game console

We’re excited about this new project from Piotr Esden-Tempski of 1BitSquared on Hackaday.io:
1641161499897782709.jpg

1Bitsy 1UP

1Bitsy 1UP is a retro inspired handheld game console, the design is based on the 1Bitsy STM32F415RGT6 ARM Cortex-M4F 168MHz 192kb RAM and 1MB Flash micro controller. 2.8″ TFT with capacitive touch, SDCard Reader and a few other components.

The display used is a TFT LCD with I2C CapTouch and ILI9341 driver. (should be compatible with the display sold by Adafruit on their breakouts as well as the buydisplay.com 2.8″ tft with CapTouch sensor)

Screenshot from 2017-07-13 21-08-58.png

The most basic design consists of:

  • 1Bitsy STM32F415RGT6 (168MHz, 192kb RAM, 1MB Flash)
  • 240×320 2.8″ TFT with capacitive touch and PWM backlight control
  • D-Pad, ABXY, Start, Select buttons
  • DAC audio out to headphones. (speakers optional)
  • SDCard connected over SDIO interface

The hardware design files and firmware source code are available on GitHub:

github1bitsy/1bitsy-1up

1Bitsy 1UP handheld game console

Arduino-programmable ARM Cortex M4F Boards

Kris Winer of Pesky Products designed these easy-to-program, high-performance and low-power dev boards:

screenshot-at-2016-12-19-18-21-29
Arduino-programmable Cortex M4F Development Boards

Program an STM32L4 Cortex M4F with the Arduino IDE via USB

07d323cc59a7037a2ce3db223c0fdf7d_original-jpg

Technical specifications of the Butterfly and Ladybug STM32L4 dev boards:

  • Microcontroller: STM32L4 ARM Cortex M4F
  • Clock speed: 1, 2, 4, 8, 16, 24, 32, 48, 64, 80 MHz
  • Operating voltage: 3.3V
  •  I/O pin limits: most pins 5.0 V tolerant, 20 mA
  • Digital I/O pins: 22, with 11 PWM (Butterfly), 13, with 10 PWM (Ladybug)
  • Analog input pins: 6 (Butterfly), 5 (Ladybug), 12-bit ADC channels
  • Analog output pins: 2 12-bit DAC
  • RTC: 1 ppm accuracy
  • Flash memory: 256 KB
  • SRAM: 64 KB
  • Voltage regulator: 3.3-5.5V input / 3.3V, 150 mA output

New Butterfly and Ladybug add-on boards

57b2768c5f3f65c565cb477bb7899e9a_original

To the left is an MPU9250 accel/gyro/magnetometer motion sensor and the BME280 pressure/humidity/temperature sensor

To the right is an ESP8266 wifi-enabled add-on board for Butterfly

Ladybug environmental data logger

99dd694fbdf0d16502e4c95b29031171_original.jpg

Reading the BME280 and VEML6040 sensors at 0.5 Hz and outputting pressure, temperature, humidity, altitude, RGB light intensity and RTC time and date to the Sharp memory display

Simple designs make hardware customization easy

c2e3de0f40183339cd72afecdd487e5a_original

Flight Controller:

STM32L432 receives quaternions from the EM7180, which itself is master to the motion and pressure sensors, GNSS data from the CAM M8Q, then processes and packages the data and sends it to the ESP8285 via UART bridge for transmission to a hand-held controller

9627aadfc8bbc07331533d6a13b697b3_original

Industrial Diagnostics:

uses an STM32L433 as master to several slave sensors to detect and process signals from industrial equipment and report to a remote server via blue tooth

Arduino-programmable ARM Cortex M4F Boards

STM32F303 + ice5 Development Board

Eric Brombaugh designed this board which pairs ARM Cortex M4 processor with a Lattice FPGA:

f303_ice5

STM32F303 + ice5 Development Board

USB, Micro SD, PMOD and GPIO interfaces allow development of complex projects in control and signal processing.

Schematic Diagram

sch.png

  • STM32F303CCT6 microcontroller:
    • 32-bit ARM Cortex-M4F CPU rated for 72MHz clock
    • 48kB SRAM, 256kB Flash
    • 10 Timers
    • 3x SPI, 2x I2S, 2x I2C, 3x USART
    • 1x CAN, 1x USB Device
    • 37 GPIO pins (20 5V tolerant)
    • 4x 12-bit SAR ADC, 2x 12-bit DACs
    • 7 Analog Comparators, 4 Op-Amps
  • Lattice iCE5LP4K-SG48 FPGA:
    • 3520 LUTs
    • 4 Multiplier/Accumulate blocks
    • 20x 4kb RAMs
    • OTP Non-volatile configuration memory
    • 1 PLL, 2x I2C cores, 2x SPI cores

The microcontroller firmware and FPGA hardware source is hosted on GitHub:

github emeb/f303_ice5

 

emeb has shared the board on OSH Park:

f303_ice5

124aa008272afeee0ce2d3c70dbaa45f

Order from OSH Park

STM32F303 + ice5 Development Board