OSHWi Octopus Badge by Gustavo Reynaga

Alex Glow of Hackster.io takes a look at the OSHWi octopus badge designed by Gustavo Reynaga:

Screenshot from 2017-12-23 09-39-22.png

The design files and source code are available on GitHub:


GReynaga has shared the board on OSH Park:


Oshwi Badge HACKSTER Version Rev 1



Order from OSH Park

OSHWi Octopus Badge by Gustavo Reynaga

SoftRF LoRa

SoftRF is an open project for aircraft collision avoidance avionics and has designed an adapter for RFM9x to fit NRF905 module dimensions and pinout:



Multifunctional DIY IoT-based general aviation proximity awareness system.


  • 2-way raw data bridge between 868/915 MHz radio band and Wi-Fi ;
  • standalone, battery powered, compatible proximity awareness instrument that fits typical 2.25 inches hole ;
  • lightweight version to carry onboard of an UAV.

SoftRF has shared the board on OSH Park:

SoftRF-LoRa v1.1
Order from OSH Park

SoftRF LoRa

LTE NB-IoT Shield for Arduino

From Timothy Woo on Hackaday.io:


LTE NB-IoT Shield for Arduino

This open-source LTE shield uses SIMCOM’s SIM7000-series modules with the latest LTE CAT-M technology to allow Arduino users to painlessly connect their low-power IoT devices with the next-generation cellular technology!


NB-IoT is also available for many countries (but sadly not in the USA yet) simply by swapping out to a different SIM7000 module version. Luckily SIMCOM made it super easy to integrate this module because most of the AT commands are identical to previous version, and Adafruit has a wonderful library for their FONA 2G and 3G products. Check it out and help make this happen!


You can view the latest code and design files here on my Github page: https://github.com/botletics/NB-IoT-Shield. Note: The hardware works great but software is still under development! I plan on launching an Indiegogo campaign when I get a fully-working prototype, so stay tuned for updates!

LTE NB-IoT Shield for Arduino

Hackaday Prize Entry: Pyrotechnics Sequencer with Wireless Control

[visualkev]’s friend was putting on his own fireworks show by lighting each one in turn, then running away. It occurred to [visualkev] that his friend wasn’t really enjoying the show himself because he was ducking for cover instead of watching the fun. Plus, it was kind of dangerous. Accordingly, he applied his hacker skills to…

via Hackaday Prize Entry: Pyrotechnics Sequencer with Wireless Control

Hackaday Prize Entry: Pyrotechnics Sequencer with Wireless Control

Asset Tracker

Kris Winer designed this is a small 4-layer PCB for remote logging of absolute position and orientation:


Asset Tracker

STM32L433-based board with CAM M8Q concurrent GNSS, EM7180 + MPU9250 + MS5637 for absolute orientation, and an ESP8285 for wifi connectivity.

The absolute orientation engine uses the MPU9250 accel/gyro/magnetometer IMU sensor plus the MS5637 barometer as slaves to an EM7180 motion co-processor that sends quaternions and drift-stabilized altitude to the host via I2C.

PeskyProducts has shared the board on OSH Park:



Order from OSH Park

Asset Tracker

STM32L4 Sensor Tile

From Kris Winer on Hackaday.io:


STM32L4 Sensor Tile

Small, connected device for smelling and hearing in any environment.

This is a 20 mm x 20 mm four-layer pcb tile full of interesting sensors (ICS43434 I2S Digital Microphone, MPU6500 acclerometer/gyro, BME280 pressure/temperature/humidity, and CCS811 air quality) with a Rigado BMD-350 UART BLE bridge for sending data to a smart phone all managed by a STM32L432 host MCU.

The STM32L432 is programmed using the Arduino IDE via the USB connector and serial data can be displayed on the serial monitor to verify performance and proper function, etc. But it is intended to be powered by a small 150 mAH LiPo battery for wireless sensing applications. The STM32L4 is a very low power MCU and with proper sensor and radio management it is possible to get the average power usage down to the ~100uA level, meaning a 150 mAH LiPo battery can run the device for two months on a charge.

A library for it is available on GitHub:


A collection of sketches to run the STM32L432-based (20 mm x 20 mm) sensor tile with an MPU6500 accel/gyro, ICS43434 I2S digital microphone, BME280 temperature/pressure/humidity sensor, and CCS811 air quality sensor. The sensor tile has an on-board MAX1555 LiPo battery charger, an on/off switch, and a Rigado BMD-350 nRF52 BLE module.




STM32L4 Sensor Tile

Hackaday Prize Entry: Sub Gigahertz RF

For his Hackaday Prize entry, [Adam] is working on an open source, extensible 915 and 433 MHz radio designed for robotics, drones, weather balloons, and all the other fun projects that sub-Gigaherts radio enables.

The design of this radio module is based around the ADF7023 RF transceiver, a very capable and very cheap chip that transmits in the usual ISM bands. The rest of the circuit is an STM32 ARM Cortex M0+, with USB, UART, and SPI connectivity, with support for a battery for those mobile projects.

via Hackaday Prize Entry: Sub Gigahertz RF — Hackaday

Hackaday Prize Entry: Sub Gigahertz RF