Raspberry Pi CAN-bus HAT for the Omzlo IoT platform

From Omzlo Electronics:

omzlo-pi-master-rpi.jpg

A Raspberry Pi CAN-bus HAT for the Omzlo IoT platform

In a previous blog post, we described “SKWARE” our revised Arduino-compatible IoT modules. These nodes are designed to be connected together in a daisy-chain fashion with a single cable that brings both DC power and CAN-bus networking. The voltage transported in the cables is not 5V (or 3.3V) but rather 12V or 24V to work more comfortably over long distances, potentially reaching 300 meters (1000 feet). You can think of it as a poor-man’s PoE.

omzlo-pi-master-diagram

This network of connected nodes is designed to be monitored and controlled by a “master node”, which injects the necessary 12V/24V DC, provides node management services and a web interface for network administration. While the IoT nodes are based on an Arduino-style microcontroller, the “master node” requires a bit more power. In this context, the ubiquitous Raspberry Pi with its GPIO header seems like an ideal candidate for that role and we decided to see if we could build a “master node” by augmenting a Raspberry Pi with an appropriate add-on board. These add-on boards are called “HATs” (for “Hardware Attached on Top”) and we called our first prototype the “Pi Master HAT”.

omzlo-pi-master-network

The drawing below illustrates the general structure of our network. A Raspberry Pi equipped with our “Pi Master HAT” controls a network of 2 (or more) daisy-chained nodes, like the SKWARE.

omzlo-pi-master-debug

Raspberry Pi CAN-bus HAT for the Omzlo IoT platform

Help gamaral’s Cancer Treatment

If you’ve enjoyed Guillermo Amaral’s electronics projects such as the Canon DSLR WiFi RemoteRaspberry Pi PSUUARTMatic 3000+, Keypad Submodule and many more, then please consider giving to his cancer treatment fund:

Gamaral’s Cancer Treatment

I’ve unfortunately had to flip the bill for my two past surgeries and my on going cancer treatment… and as you can imagine, I’m running out of cash.

If you like my content and/or have found my published projects interesting or useful, please consider sending me some spare change and I’ll be ever so grateful.

Here are couple great project videos by Guillermo on YouTube:

Help gamaral’s Cancer Treatment

3D Scanner HAT for Raspberry Pi

From Jonathan Cohen on Tindie:
unnamed.jpg

3D Scanner HAT for Raspberry Pi

3D Scanner HAT expansion board interface for Raspberry Pi running FreeLSS on the PICLOP ATLAS FreeLSS

 

I wanted to make a custom interface for use with the open-source 3D Scanning software, FreeLSS. I was very impressed with the Arduino-based Ciclop scanner and the Raspberry Pi-based Atlas Scanner. Several FreeLSS users merged the two scanner platforms, creating the PiCLOP 3D Scanner. However, there were few changes to the basic PCB design used for the scanner. I wanted to integrate the hardware functionality into a Raspberry Pi HAT format, with the inclusion of extra features for expandability — and who knows, other uses !

 

What makes it special?

  • Conforms to the Pi Foundation specification for HATs !
  • 5V power design (only a single voltage) allowing for Pololu low-voltage stepper driver carrier.
  • Connections for up to two independent soft-PWM controlled LED light sources.
  • I2C interface for OLED displays and light intensity sensors, e.g. TSL2561 or TSL2591.
  • Serial communication breakout for console support.
  • Additional GPIO signal breakouts for other sensors and devices.
  • User-programmable EEPROM ! for auto-configuration and device overlays.
  • Standard DC power connector for up to 5V 4A power supply and connections for power switch.
  • Over-current protection by poly re-settable fuse.
3D Scanner HAT for Raspberry Pi

Raspberry Pi Soft Power Controller

James Lewis designed this AVR based power controller for the Raspberry Pi that can safely shutdown the Pi:

6549371493595134727

Raspberry Pi Soft Power Controller

The total circuit includes an AVR microcontroller, a near-zero current LDO, and a switching (buck) supply. My current design draws about 350nA when Vin is 9V. The AVR controls power to the Raspberry Pi. Two GPIO pins are used. One for the AVR to initiate a shutdown and one for Raspberry Pi to tell AVR after filesystem has been unmounted.
The design files and source are shared on GitHub:

baldengineer/Raspberry-Pi-Soft-Power-Controller

Raspberry Pi Soft Power Controller