EasyPWR

From mcu_nerd on Hackaday.io:

1456891490358322562.JPG

EasyPWR

A small, easy to assemble board that makes use of old wall warts.

 

Like many of us, I had a bunch of various wall-warts lying around, but sadly though none of them produced a regulated 5V/3.3V. I had some 78xx regulators around, so I went into KiCad and made a board to make those wall-warts useful! Changing the world by saving old wall warts from the dumpster!

EasyPWR

Building a PCB lapel

JinGen Lim created this beautiful project:

csslapel-done

Building a PCB lapel

I had little experience with fabric, but building a lapel out of PCB seemed like something that might just work. PCBs are typically built with extremely high tolerances for its copper and mask layers and still acceptably accurate for the silkscreen.

 

Building a PCB lapel

Ultrasound Imaging with Raspberry Pi

 writes on the Hackaday blog:20170529_203924_notes

Best Product Entry: A HSDK for Ultrasound Imaging

As an entry into this year’s Best Product portion of the Hackaday Prize, [kelu124] is developing a hardware and software development kit for ultrasound imaging.

Ultrasound is one of the primary tools used in modern diagnostic medicine. Head to the doctor with abdominal pain, and you can bet you’ll be seeing the business end of an ultrasound system. While Ultrasound systems have gotten cheaper, they aren’t something everyone has in the home yet.

AD9200

[kelu124] is working to change that by building a hardware and software development kit which can be used to explore ultrasound systems. This isn’t [kleu124’s] first rodeo. HSDK builds upon and simplifies Murgen, his first open source ultrasound, and an entry in the 2016 Hackaday prize. [kelu124’s] goal is to “simplify everything, making it more robust and more user-friendly”.

setup.png

The system is driven by a Raspberry Pi Zero W. A custom carrier board connects the Pi to the pulser block, which sends out the ultrasonic pings, and the analog front end, which receives the reflected signals. The receiver is called Goblin, and is a custom PCB designed [kelu124] designed himself. It uses a variable gain amplifier to bring reflected ultrasound signals up out of the noise.

 

Ultrasound Imaging with Raspberry Pi

Programming Surface Mounted Chips

Ken Olsen writes in a Surface Mount Challenge project log on Hackaday.io:

5429531497407265994

Programming Surface Mounted Chips

A majority of my projects to date have used DIP package Attiny85, 84, and Atmega328. These are usually programmed beforehand using a ISP shield on an Arduino, or afterwards using the ISP header. My first PCB design, was in fact, a shield which could be used to program the variety of AVR chips I was using. Breadboarding up an Arduino-as-ISP circuit time every time I needed one was error-prone and frustrating.

8494451497407448299.jpg

It occurred to me that since not all projects have ISP headers, there should be some way to program the chips prior to installation. With a little googling, I found SOIC to DIP adapters which can be used to mate up with a DIP ZIF fixture. A SOIC 20 allows me to program the AVR 8-pin, 14-pin, and 20-pin packages!

Programming Surface Mounted Chips

KiCad footprint for Nokia 5110 LCD

Sven Gregori on Hackaday.io created a KiCad component and footprint for the Nokia 5110 LCD and created this breakout board to test it:8695331498520943537

Yet another Nokia 5110 LCD breakout board

I just shamelessly measured all there was to measure and created my own KiCad PCB footprint, along with a schematic component.

Once done, I needed a way to verify it would actually work and fit the LCD, so despite how pointless it is, I created my own breakout board as proof of concept and ordered it from OSH Park.

2564051498753691661

The Nokia 5110/3310 LCD component and footprint are available on GitHub:

Screenshot from 2017-06-10 14-39-57

sgreg has shared the breakout board on OSH Park:

Nokia 5110 LCD Breakout Board Rev.A

19e63d03bf94e53b32eed69f1556c35b

Order from OSH Park

KiCad footprint for Nokia 5110 LCD

Hackaday Prize Entry: A Tiva Shaped Like an Arduino

Texas Instruments’ Tiva C LaunchPad showcases TI’s ARM Cortex-M4F, a 32-bit, 80Mhz microcontroller based on the TM4C123GH6PM. The Tiva series of LaunchPads serve as TI’s equivalent of the Arduino Uno, and hovers at about the same price point, except with more processing power and a sane geometry for the GPIO pins. The Tiva’s processor runs five times…

via Hackaday Prize Entry: A Tiva Shaped Like an Arduino — Hackaday

Hackaday Prize Entry: A Tiva Shaped Like an Arduino

Tindie Seller Interview: Alex Albino

femtobeacon.jpg
interviewed Alex Albino of Femtoduino for the Tindie blog:

Alex Albino, of the Femtoduino Store, is one of the original sellers on Tindie, with his store officially listed as opening on November 26, 2012. During this time, he’s sold well over 300 of his custom boards, and I was glad to catch up to him to ask a few questions.

Albino, who works as a software and web developer, first got into electronics after his NES was fried in a thunderstorm in junior high, and he got to take it apart. Eventually his interests led him to the Arduino and Fabio Varesano’s work, and multiple hardware platforms over the years.

Albino’s store started with him asking Fabio Varesano if he could sell Femtoduino boards, which have the same outputs as an Arduino Uno in the size of one’s thumb. Since Varesano wasn’t interested in selling them himself, he generously gave Albino permission to run with this design. Albino then went to work assembling and selling these boards, and even made sure to give a portion of the money he made—though he didn’t have to—back to Varesano to promote his open source work.

femtoduino-store.jpg

Of course, these tiny Arduino clones are still for sale, but Albino sells several other items, including the FemtoBeacon wireless IMU (inertial measurement unit) sensor. He even notes his store theme as providing the smallest open source IMU sensors in the world. You can see one in the image above next to a U.S. dime—quite small indeed. He hopes to grow the Femtobeacon business into a full-time job in the future.

Naturally, Albino has bought from other Tindarians in the past, which he says is always fun. He also notes that, “If you sell anything on Tindie, make sure to package carefully, take decent photos, and include videos of stuff in action!” As such, here’s a video of the tiny Femtoduino in action:

Tindie Seller Interview: Alex Albino