Reflowduino: Circuit Board Assembly for Everyone

Timothy Woo has launched a Indiegogo campaign to manufacture his open-source, Arduino-compatible, wireless PCB reflow oven controller:

vwqlvw1alqs19g9mq16x.jpg.png

Reflowduino: Circuit Board Assembly for Everyone!

Reflowduino is the first completely open-source, Arduino-compatible reflow oven controller of its kind that enables practically anyone to assemble their own beautiful circuit boards at home!

Reflowduino comes loaded with features, all in a compact Arduino-compatible package, with full documentation, example code, demo app, and comprehensive wiki on Github.

ecriw1wwk9mpio5pmbz4

Reflowduino is designed to be extremely easy to use! The general concept is to switch the power of the appliance on or off with a solid-state relay as shown below, measuring the temperature by placing the thermocouple tip inside the oven during the whole process.

If nothing else, please share this campaign to your friends, family, and anyone who might be interested on social media! Remember that every view counts for me, and I’m depending on you to make this happen!

arynyhrvcfd87k9omiwx

Reflowduino: Circuit Board Assembly for Everyone

Micro SD Extension Cable

 writes on the Tindie blog:

extension1-wb

Micro SD Extension Cable

Weirdly, one problem with memory now being so small is that these drives can be placed in areas that are difficult to access. Usually this means some sort of USB adapter (another amazing improvement over serial or parallel ports), but if you just want an actual SD extension cable in the form of a micro SD card, here it is! This device was conceived of when programming a BeagleBone Black, and could have lots of other applications.

extension2

I designed this little tool while compiling a software installation on BeagleBone Black. I needed to repetitively remove/inset the micro SD card. The BeagleBone was installed in a hard-to-reach area. So much time was wasted trying to inset the card with tweezers.

This simple tool plugs into the hard-to-reach socket, and provides a flexible extension.

Length: 3.5″

Screenshot from 2017-10-19 12-47-58.png

Micro SD Extension Cable

Want to try flex?

UPDATE 2018-01-03:

We are still testing our flex process. We just sent our second round off to fab this week.

The previous round was delivered to folks starting Hackaday Supercon weekend back in November 2017. Here some more information:

Flex Beta Service Info + FAQ

We were pleased to see Trammell Hudson’s creative Catalan design:

DOZLsL_U8AA9bc9

Screenshot from 2018-01-05 10-06-52

For more information, please email: [email protected]

 



We’re looking for a variety of flex designs to test.  The specs will be the same as our normal 2 layer service but on Kapton:

  • 6 mil minimum trace width
  • 6 mil minimum trace spacing
  • 10 mil minimum drill
  • 5 mil annular ring

Please send us an email with “flex” in the subject: [email protected]

Want to try flex?

ATXMega32E5 adapted for a breadboard

2017-07-04T23:35:25.015Z-IMG_8570.jpg.855x570_q85_pad_rcrop.jpg

ATXMega32E5 breakout board

The ATXMega32E5 is the next step up for those experienced with the AVR series of microcontrollers from Microchip (formerly Atmel). They use the same compilers and libraries as the rest of the AVR 8- and 16-bit families, but they can run at 32 MHz and have an amazingly powerful set of internal peripherals that can take your projects to the next level and beyond.

2017-07-04T23:35:25.015Z-IMG_8571.jpg.855x570_q85_pad_rcrop.jpg

For prototyping, however, the disadvantage is that the XMega chips are not available as through-hole parts. That’s where this breakout board comes into play.

nsayer has shared the board on OSH Park:

ATXMega_E5 breakout v1.0

9ccb24bd9f9b447019c3a97cfa9dd06b.png
Order from OSH Park

ATXMega32E5 adapted for a breadboard

EasyPWR

From mcu_nerd on Hackaday.io:

1456891490358322562.JPG

EasyPWR

A small, easy to assemble board that makes use of old wall warts.

 

Like many of us, I had a bunch of various wall-warts lying around, but sadly though none of them produced a regulated 5V/3.3V. I had some 78xx regulators around, so I went into KiCad and made a board to make those wall-warts useful! Changing the world by saving old wall warts from the dumpster!

EasyPWR

Ultrasound Imaging with Raspberry Pi

 writes on the Hackaday blog:20170529_203924_notes

Best Product Entry: A HSDK for Ultrasound Imaging

As an entry into this year’s Best Product portion of the Hackaday Prize, [kelu124] is developing a hardware and software development kit for ultrasound imaging.

Ultrasound is one of the primary tools used in modern diagnostic medicine. Head to the doctor with abdominal pain, and you can bet you’ll be seeing the business end of an ultrasound system. While Ultrasound systems have gotten cheaper, they aren’t something everyone has in the home yet.

AD9200

[kelu124] is working to change that by building a hardware and software development kit which can be used to explore ultrasound systems. This isn’t [kleu124’s] first rodeo. HSDK builds upon and simplifies Murgen, his first open source ultrasound, and an entry in the 2016 Hackaday prize. [kelu124’s] goal is to “simplify everything, making it more robust and more user-friendly”.

setup.png

The system is driven by a Raspberry Pi Zero W. A custom carrier board connects the Pi to the pulser block, which sends out the ultrasonic pings, and the analog front end, which receives the reflected signals. The receiver is called Goblin, and is a custom PCB designed [kelu124] designed himself. It uses a variable gain amplifier to bring reflected ultrasound signals up out of the noise.

 

Ultrasound Imaging with Raspberry Pi

Programming Surface Mounted Chips

Ken Olsen writes in a Surface Mount Challenge project log on Hackaday.io:

5429531497407265994

Programming Surface Mounted Chips

A majority of my projects to date have used DIP package Attiny85, 84, and Atmega328. These are usually programmed beforehand using a ISP shield on an Arduino, or afterwards using the ISP header. My first PCB design, was in fact, a shield which could be used to program the variety of AVR chips I was using. Breadboarding up an Arduino-as-ISP circuit time every time I needed one was error-prone and frustrating.

8494451497407448299.jpg

It occurred to me that since not all projects have ISP headers, there should be some way to program the chips prior to installation. With a little googling, I found SOIC to DIP adapters which can be used to mate up with a DIP ZIF fixture. A SOIC 20 allows me to program the AVR 8-pin, 14-pin, and 20-pin packages!

Programming Surface Mounted Chips