Orthrus: secure two-card storage

From Nick Sayer on Hackaday.io:

3464311493930554576.jpg

Orthrus: SD card secure RAID USB storage

This project is a hardware mechanism to provide secure “two man control” over a data store. It is a USB microSD card reader, but it requires two cards. The data is striped in the style of RAID 0, but the data is also encrypted with a key that is stored in a key storage block on each card. In essence, each card is useless without the other. With possession of both cards, the data is available without restriction, but with only one, the remaining data is completely opaque.

This allows you to securely transport a data set by writing it onto a pair of cards and separately transporting them to a destination for recombination.

The intent is that only the pairing of two cards becomes in any way special. A card pair could be inserted in any Orthrus device and the data would be made available. But with only one card, all you get is half of the data encrypted with a key which you only half-possess.

The firmware source code is available on GitHub:

githubnsayer/Orthrus

white

The assembled board is available on Tindie:

Screenshot from 2017-05-05 18-25-42

Orthrus: secure two-card storage

EEEmu SPI

Blecky’s latest project on Hackaday.io is an EEPROM/Flash emulator with a fun name:

unnamed

EEEmu SPI

The EEEmu SPI emulates any Serial Peripheral Interface Bus EEPROM or Flash memory chipsets up to an interface speed of 25MHz. It also supports any supply and interface voltage between 1.8 to 5 Volts and can be configured to support even the largest of memory sizes.

7435141492517315886

This repository contains configurations for all the currently supported EEPROM and Flash chips for the EEEmu SPI:

githubEEEmu/Supported-Devices

white

EEEmu SPI

Resurrecting a Psion Series 5 PDA

RasmusB on Hackaday.io is resurrecting a Psion Series 5 PDA:

2704791422464175424.JPG

Psioπ

Bringing a Psion Series 5 into this decade by replacing all the important bits.

The completed result will (hopefully) be a portable modern Linux system with all the connectivity options expected in a modern device.

The keyboard adapter board is available on Tindie:

9706821490040814861.jpg

USB keyboard adapter for Psion Series 5 keyboards

This is an USB interface for Psion series 5 PDA keyboards. Plug in a keyboard and a USB cable, and use it with any modern computer!

The design files and source code are available on GitHub:

github-smallRasmusB/PsioPi

Resurrecting a Psion Series 5 PDA

Musical Toothbrush by Joe Grand

Hackaday wrote about a nifty hack by Joe Grand:

33584362176_d159e08108_z

[Joe Grand’s] Toothbrush Plays Music That Doesn’t Suck

It’s not too exciting that [Joe Grand] has a toothbrush that plays music inside your head. That’s actually a trick that the manufacturer pulled off. It’s that [Joe] gave his toothbrush an SD card slot for music that doesn’t suck. The victim donor hardware for this project is a toothbrush meant for kids called Tooth Tunes.…

33584363126_442705bc93_z

Joe published full documentation for the project on his website:

The PCB is shared on OSH Park:

Tooth Tunes Hack

5fc6751cdeff95ffbd5f0f956553f2c7
Order from OSH Park

Joe describes the project in this video:

Hear the toothbrush in action:

Musical Toothbrush by Joe Grand

Versatile ATtiny Programming Adapter

Lucky Resistor designed this programming adapter for ATtiny13 and similar chips:

lucky-resistor-6

A Versatile ATtiny Programming Adapter

As mentioned in my article about designing a cheap plant watering sensor, I built a small adapter which can be used to pre-program the ATtiny13A. This is necessary, because once soldered on the board, I only have a debugWire interface, which has to be enabled first.

lucky-resistor-5

The adapter has a small 50mil JTAG header, where the Atmel ICE can be connected with the board. There is also room for a USB mini jack, which is used to power the MCU while programming. A small on-off switch is used to power the MCU and a LED is placed as indicator to see if the MCU has power.

One of the DIL/ZIF adapters is mounted on top of the female headers. Most of the adapters for SO-8, SO-14 and SO-16 will work with this board.

To make the board more versatile, I added a number of jumpers and solder points. By default, the adapter is connecting to the right pins for the ATtiny13A, but you can cut these routes and solder wires onto the board to implement any kind of connection you like.

The design files are available on GitHub:

github.png LuckyResistor/ATtinyAdapter

LuckyResistor has shared the board on OSH Park:

ATtiny Adapter

d8e993c190c6a0276438a5ca4e1b736b.png
Order from OSH Park

Versatile ATtiny Programming Adapter

$3 Tinusaur board on IndieGoGo

Neven Boyanov has launched a new Tinusaur campaign on IndieGoGo:

Learn, Teach and Make with the Tinusaur

Small microcontroller board that could run Arduino and help you learn, teach others and make things

uvloj5csuhcx0ri4yn5c

The Tinusaur is powered by the Atmel ATtiny85 microcontroller.

We want to bring the cost down to $3 for the basic “lite” boards
and allow more people to be able to get them.

$3 Tinusaur board on IndieGoGo