In one hand you hold the soldering iron, in the other the solder, and in two more hands the parts you’re trying to solder together. Clearly this is a case where helping hands could be useful.
One reason is to take advantage of standardized, open source creativity. Anyone can share a model of their design for all to use as is, or to modify for their needs. A case in point is the ball and socket model which I downloaded for a helping hand. I then drew up and printed a magnifying glass holder with a matching socket, made a variation of the ball and socket joint, and came up with a magnetic holder with matching ball. Let’s take look at what worked well and what didn’t.
Our guests for this week’s Hack Chat are Pete Dokter and Toni Klopfenstein of SparkFun Electronics. Pete is formerly the Director of Engineering at SparkFun and now the Brand Ambassador for SparkFun Electronics.
He hosts the According to Pete video series expounding on various engineering principles and seriously needs a silverburst Les Paul and a Sunn Model T. Toni is currently the product development manager at SparkFun. She’s served on the Open Source Hardware Association Board and participates in the Open Hardware Summit yearly. In her free time, she spends fifty weeks out of the year finding dust in her art and electronics projects.
The Micro:bit is a pretty decent platform for teaching kids to program, but you can’t really make arcade-style games for it. You only have two buttons and a 5×5 display. Perhaps enough for a very small snake game, but that’s pretty much it. That’s why I started working on #PewPew FeatherWing as an alternative platform, but at some point I started wondering if it’s really impossible to do it on the micro:bit.
When the most recent version of micropython got the ability to use any pins for I2C, I realized that I can finally connect a display easily. I could use a HT16K33 and a 8×8 LED matrix like on the PewPew, but I decided to try something else — a monochrome OLED display, similar to the one used on many Arduino-based game consoles.
Take a look at Tindie’s thriving sound section and you’ll see there is no shortage of people making their own electronic music. These devices take many forms, and one interesting take on sound creation is the OKAY 2 Synth DIY Kit. At face value it features 2 octaves of keys, a built-in amplifier along with a 1/4″ line out, and knobs to select the octaves that you’d like to play — but it gets more interesting under the hood.
What makes it unique by today’s standards is that it doesn’t use any sort of computer or microcontroller, but instead produces sound using an LM555 timer along with other discreet components for monophonic sound. Given its small size, you could use two at once, perhaps combining them via the line out to be further modified in your synth setup!
In case you’re wondering, the original—or nearly so as it’s version 1.1.1—OKAY is also available. It works largely the same as the OKAY 2, but features only a single octave of keys, and doesn’t have an audio output jack.
This project is based on my #reDOT project. Basicly it is a 5×7 SMD LED Matrix an a microcontroller on one PCB. I started wirh 0201 LEDs (see first project log), but this was not reliable. So a second version with 0402 is in development. 0402 LEDs do have some benefits over 0201:
bigger and you can solder them better
cheaper
more colors availible
The microcontroller (a low coast STM8) drives all LEDs directly with multiplexing. For controlling a UART interface is available. The dimensions are like a DIP-6 package. For easy connection of multiple PCBs, the pads are castellated. Also the supply rails are available on both sides. So multiple of these display can be soldered together to a bigger display without the need of additional wiring.
[Nick Sayer] used the USNO Master Clock telephone feed to see in the New Year, but had to make do with a voice from another time zone. It seems that there are no services remaining that provide one in Pacific time. His solution to the problem for a future year? Make his own Talking Clock, one that derives its time reference from GPS.
At its heart is a SkyTraq Venus838LPx miniature GPS module coupled to an ATMega32E5 microcontroller. The speech comes in the form of pre-recorded samples stored on an SD card. There is a small on-board amplifier to drive a single speaker. For extreme authenticity perhaps it could be attached to a GSM mobile phone module to provide a dial-up service, but he’s got everything he needs for a New Years Eve.
We would like to let our customers know that all OSH Park boards are manufactured in the United States, and we will be operating on a normal schedule during Lunar New Year: