LTE NB-IoT Shield for Arduino

From Timothy Woo on Hackaday.io:

8302141510267404941.jpg

LTE NB-IoT Shield for Arduino

This open-source LTE shield uses SIMCOM’s SIM7000-series modules with the latest LTE CAT-M technology to allow Arduino users to painlessly connect their low-power IoT devices with the next-generation cellular technology!

6990071510267413269

NB-IoT is also available for many countries (but sadly not in the USA yet) simply by swapping out to a different SIM7000 module version. Luckily SIMCOM made it super easy to integrate this module because most of the AT commands are identical to previous version, and Adafruit has a wonderful library for their FONA 2G and 3G products. Check it out and help make this happen!

3454341510977654311

You can view the latest code and design files here on my Github page: https://github.com/botletics/NB-IoT-Shield. Note: The hardware works great but software is still under development! I plan on launching an Indiegogo campaign when I get a fully-working prototype, so stay tuned for updates!

LTE NB-IoT Shield for Arduino

High Speed Data Acquisition Chat

Kumar Abhishek, creator of the BeagleLogic Standalone, will be hosting a Hackaday HackChat on Friday, November 17th:

unnamed.jpg

High Speed Data Acquisition Chat

This Hack Chat is at 9:30a PST, Friday, November 17th.

This chat is about data acquisition. Data acquisition (DAQ) is a process by which a signal such as voltage, current, temperature, pressure, or sound is measured with a processing system. A processing system can be an entire computer or a standalone chip. The goal of a good DAQ system is to provide accuracy as quickly and be as cost effective as possible.

Kumar [Abhishek] is an engineering graduate from the Indian Institute of Technology (IIT) Kharagpur, India, whose journey into the world of hardware began when he picked up the soldering iron at the age of 7. As a student under the Google Summer of Code (GSoC) program under BeagleBoard.org, [Abhishek] worked with BeagleBoard.org to realize a logic analyzer using the Programmable Real-Time units on the BeagleBone, called BeagleLogic. He has also served as a Summer of Code mentor for BeagleBoard.org.

In this chat, we’ll be discussing:

  • The PRUs on the BeagleBone series of hardware, and their capabilities
  • How BeagleLogic uses the PRUs to perform data acquisition
  • Ways to program the PRUs
  • (Ways of) processing the data acquired from the PRUs
High Speed Data Acquisition Chat

Arduino Neural Network Robot

Sean Hodgins created an Arduino-based robot that avoids light by navigating using a neural network:
4863551509384902904
This project is meant to teach about utilizing neural networks in robotic platforms. There will be a 3 part video series on the Make YouTube channel on building the robot. It will start with prototyping and design, then move onto assembly and testing, and finally programming and running the neural network. You will be able to follow along and make your own robot in the end.

Part 2: Soldering and Assembly

 

 

Arduino Neural Network Robot

BeagleLogic Standalone

Kumar Abhishek just announced on his blog a project that he has been working on the past four months:

beaglelogic-standalone-top (1)

Announcing: BeagleLogic Standalone

BeagleLogic Standalone is a specialized version of the BeagleBone which is intended to be used a logic analyzer based on BeagleLogic.

Screenshot-from-2017-10-10-09-37-04

This logic analyzer has networking capabilities (10/100/1000Mbps Ethernet); it can be used to used to debug circuits remotely. And as it is a full-featured Linux computer, you can run the sigrok set of tools directly on the BeagleLogic Standalone board (they come preinstalled in the BeagleLogic system image), or on your host PC. It has 16 channels and can sample up to 1.5 seconds of data at the maximum sample rate, which is 100MSamples/sec (3 seconds of data if using only the first 8 channels).

Screenshot-from-2017-10-06-14-45-03

I designed and 3D printed a snug fit “open” case for the BeagleLogic standalone board. I’ve written more about it in a Hackaday.io project log.

bls-3dprintedcase

BeagleLogic Standalone is one of the 20 finalists in the Best Product round of the Hackaday Prize. The results are awaited on the 11th of November. It’s been a great journey taking BeagleLogic standalone from a concept to a prototype and giving a glimpse as to what it could be as a finished product and the experience I gained during the process is invaluable, and I wish to thank Hackaday for providing me with this opportunity.

If enough people sign up, I plan on organizing a group buy for BeagleLogic Standalone boards. If you want to get one, please do not hesitate and sign up here.

The documentation for the board is available at standalone.beaglelogic.net. You can also follow the project on Hackaday.io here.

BeagleLogic Standalone

µGame by Radomir Dopieralski

Radomir Dopieralski has created handheld game console programmable with (Micro/Circuit)Python:

2179411509287391232.jpg

µGame

A small game console directly programmable in Python. I always wanted to make this, and after my work on #PewPew FeatherWing I finally decided that I’m ready.

The first version may be a bit of a stretch — I tried to make it as small as possible, fitting in the 5x5cm limit of PCB manufacturers, so that it will be cheap to make the PCBs. Using the cheap ST7735 TFT display, and a cheap ATSAMD21E chip. I also tried to put all the components on one side of the board, but failed with that — the power and reset switch had to go on the back, as well as the buzzer.

 

 

µGame by Radomir Dopieralski

Rotary Encoder with I2C Interface and RGB Lighting

From Jeremy S. Cook on the Tindie blog:

encoder (1).jpg

Rotary Encoder with I2C Interface and RGB Lighting

Makernet Knob’s makes the point that “Rotary encoders are cool but hard to wire into your projects.” Having wired up a custom input device for my computer using an encoder, I can attest to both of these statements. In my case, it took me quite a bit of time simply to figure out how each encoder pin was used!

2017-10-06T21_08_06.531Z-GM1200PTH pic4.jpg.855x570_q85_pad_rcrop.jpg

To help alleviate complicated wiring issues, this custom knob features a built-in I2C interface, which allows several (even hundereds) of knobs to be chained together without issue. Additionally, the top of the encoder can be depressed as a pushbutton, and it even has an RGB LED integrated inside of it to give you feedback right on the knob!

Rotary Encoder with I2C Interface and RGB Lighting

Mr. Runner

Alex Martin is creating a four legged robot with a running bound gait:

9754291472923566463.png

Mr. Runner

The aim of this project is to lower the barrier of entry into dynamic robotics. After seeing Boston Dynamic’s Wildcat I became interested in working on something similar, but was disappointed with what the hobbiest scene had to offer. They all used static locomotion. I wanted it to feel alive!

I hope that if people can see that this style of robotics is reproducible with basic development skills, it will attract a wider range of people to legged robots than just those who want to see a vaguely spider looking device re-implement the same kinematic equations over and over again.

371011500859268418.jpg

The approach is based on the work of Fumiya Iida and Rolf Pfiefer at the University of Zurich in the mid 2000’s. Dr. Pfeifer is well known in the field of embodied cognitive science, and these experiments were an attempt to generate movement in quadruped robots based on those principles.

Mr. Runner

Wemos D1 Mini Breakout for an ST7735 Display

Radomir Dopieralski has created this breakout board to make it easier to slap a popular ST7735 module on top of a Wemos D1 Mini:

8571081501668647022.jpg

D1 Mini Breakout for an ST7735 Display

There is a number of options you have for display shields for the D1 Mini: there is the nice OLED shield, there is a shield with a single WS1228B neopixel, there is the #D1 Mini Matrix Shield I’m still working on. But there is no high-resolution color display you could just slap on it. This “shield” doesn’t really deserve the name, it’s just a simple breakout board that connects the ST7735 display module with the SPI pins of the D1 Mini, and adds a trim pot for brightness control.

4514121484133413329.png

To save some pins, the CS pin is hardwired to GND, and the A0 pin is connected to MISO. That means you can’t connect other SPI devices while this is in, but that’s a rare enough case for me to care. It uses four GPIOs total, from GPIO12 to GPIO15. The backlight is connected to the 5V supply (to not strain the on-board 3V3 regulator) through a trim pot, so you can adjust brightness.

I used alternating holes for the module’s header, so that with some luck you should be able to plug in the module directly, without soldering a female pin header there — that should also save some space.

Wemos D1 Mini Breakout for an ST7735 Display

STM32L4 Sensor Tile

From Kris Winer on Hackaday.io:

316281486923705430.jpg

STM32L4 Sensor Tile

Small, connected device for smelling and hearing in any environment.

This is a 20 mm x 20 mm four-layer pcb tile full of interesting sensors (ICS43434 I2S Digital Microphone, MPU6500 acclerometer/gyro, BME280 pressure/temperature/humidity, and CCS811 air quality) with a Rigado BMD-350 UART BLE bridge for sending data to a smart phone all managed by a STM32L432 host MCU.

The STM32L432 is programmed using the Arduino IDE via the USB connector and serial data can be displayed on the serial monitor to verify performance and proper function, etc. But it is intended to be powered by a small 150 mAH LiPo battery for wireless sensing applications. The STM32L4 is a very low power MCU and with proper sensor and radio management it is possible to get the average power usage down to the ~100uA level, meaning a 150 mAH LiPo battery can run the device for two months on a charge.

A library for it is available on GitHub:

kriswiner/SensorTile

A collection of sketches to run the STM32L432-based (20 mm x 20 mm) sensor tile with an MPU6500 accel/gyro, ICS43434 I2S digital microphone, BME280 temperature/pressure/humidity sensor, and CCS811 air quality sensor. The sensor tile has an on-board MAX1555 LiPo battery charger, an on/off switch, and a Rigado BMD-350 nRF52 BLE module.

 

 

 

STM32L4 Sensor Tile